
HCS12 T-Board
Hardware-

Version 1.00

User Manual

July 4 2003

Copyright (C)2002,2003 by
MCT Elektronikladen GbR
Hohe Str. 9-13, D-04107 Leipzig
Phone: +49-(0)341-2118354
Fax: +49-(0)341-2118355
Email: mct@elektronikladen.de
Web: http://www.elektronikladen.de/mct

This manual and the product described herein were designed
carefully by the manufacturer. We have made every effort to avoid
mistakes but we cannot guarantee that it is 100% free of errors.

The manufacturer's entire liability and your exclusive remedy shall
be, at the manufacturer's option, return of the price paid or repair or
replacement of the product. The manufacturer disclaims all other
warranties, either expressed or implied, including but not limited to
implied warranties of merchantability and fitness for a particular purpo-
se, with respect to the product including accompanying written material,
hardware, and firmware.

In no event shall the manufacturer or its supplier be liable for any
damages whatsoever (including, without limitation, damages for loss of
business profits, business interruption, loss of business information, or
other pecuniary loss) arising out of the use of or inability to use the
product, even if the manufacturer has been advised of the possibility of
such damages. The product is not designed, intended or authorized for
use in applications in which the failure of the product could create a
situation where personal injury or death may occur. Should you use the
product for any such unintended or unauthorized application, you shall
indemnify and hold the manufacturer and its suppliers harmless against
all claims, even if such claim alleges that the manufacturer was negli-
gent regarding the design or implementation of the product.

Product features and prices may change without notice.

All trademarks are property of their respective holders.

HCS12 T-Board

Contents

25CAN Interface .

24IIC-Bus .

24SPI Ports .

23IF-Module Connection .

22RS232 Interface .

22Input Devices .

20Buzzer .

20Indicator-LEDs .

18Integrated EEPROM .

16Integrated A/D-Converter .

15Operating Modes, BDM Support .

14Clock Generation and PLL .

13Reset Generation .

12Controller Core, Power Supply .

12Schematic Diagram .

126. Circuit Description .

115. Mechanical Dimensions .

9Solder Bridges .

9Jumpers .

94. Jumpers and Solder Bridges .

73. Parts Location Diagram .

62. Quick Start .

5Optional Components .

5Package Contents .

4Technical Data .

31. Overview .

User Manual

1

299. RAM Expansion (Option) .

288. Memory Map .

27Additional Information on the Web .

27Startup Code .

26Behaviour after Reset .

26HCS12 T-Board as BDM-Debugger .

267. Application Hints .

HCS12 T-Board

2

1. Overview
The HCS12 T-Board is an universal evaluation and training board

for Motorola's advanced HCS12 16-bit microcontroller family. It provi-
des a low-cost development platform and helps reducing development
time and cost. It is a versatile tool for rapid prototyping and educational
purposes.

The HCS12 T-Board is equipped with a MC9S12DG256 microcon-
troller unit (MCU). It contains a 16-bit HCS12 CPU, 256KB of Flash
memory, 12KB RAM, 4KB EEPROM and a large amount of peripheral
function blocks, such as SCI, SPI, CAN, IIC, Timer, PWM, ADC and
General-Purpuse-I/Os. The MC9S12DG256 has full 16-bit data
paths throughout. An integrated PLL-circuit allows adjusting perfor-
mance vs. current consumption according to the needs of the user appli-
cation.

In addition to the on-chip controller functions, the HCS12 T-Board
module provides a number of useful peripheral components, such as
RS232 and CAN transceivers, indicator elements (optical/acoustical),
input devices (DIP switch, potentiometer) and a voltage regulator.

The HCS12 T-Board brings out all MCU signals to header connec-
tors located around the controller chip. These connectors are arranged
in the same way as on Motorola's "Barracuda"-EVB. In addition, the
HCS12 T-Board is compatible with D-Bug12, Motorola's HCS12
software monitor. Using D-Bug12, the HCS12 T-Board can also be
operated as a BDM based debugger.

For HCS12 microcontrollers, a wide range of software tools
(Monitors, C-Compilers, BDM-Debuggers) is available to accelerate the
development process.

User Manual

3

Technical Data

w MCU MC9S12DG256 with LQFP112 package (SMD)

w HCS12 16-bit CPU, uses same programming model and
command set as the HC12

w 16 MHz crystal clock, up to 25 MHz bus clock using PLL

w Memory: 256KB Flash, 4KB EEPROM, 12KB RAM

w 2x SCI - asynch. serial interface (e.g. RS232, LIN)

w 3x SPI - synch. serial interface

w 1x IIC - Inter-IC-Bus

w 2x msCAN-Module (CAN 2.0A/B-compatible), one channel
equipped with on-board high-speed physical interface driver

w 8x 16-Bit Timer (Input Capture/Output Compare)

w 8x PWM (Pulse Width Modulator)

w 16-channel 10-bit A/D-Converter

w BDM - Background Debug Mode Interface, std 6-pin connector

w Special LVI-circuit (reset controller)

w Serial interface with RS232 transceiver (for PC connection)

w Second serial port for IF-Modules (RS232, RS485, LIN...)

w 8x Indicator-LED, one Bi-color LED (adjustable via PWM)

w Sound transducer (buzzer)

w Reset Button

w 8x DIP switch, two push button switches

w analog input potentiometer

w up to 85 free general-purpose I/Os

w all MCU signals brought out on four header connectors around
the MCU, arrangement compatible with Motorola EVB

w Connector for wall plug power supply (not included)

w On-board voltage regulator generates 5V operating voltage,
current consumption 50 mA typ. (plus LEDs etc.)

w Mech. Dimensions: 80mm x 95mm

HCS12 T-Board

4

Package Contents

w Evaluation Board with MC9S12DG256

w D-Bug12 Monitor (in the MCU's Flash Memory)

w RS232 cable (Sub-D9)

w User Manual (this document)

w Schematic Diagrams

w CD-ROM: contains assembler software, data sheets, CPU12
Reference Manual, code examples, C-compiler (evaluation
version), etc.

HCS12 T-Board V1.00

Optional Components

As an option, the RAM add-on board RAM-Bo256 is available. It
can be plugged directly onto the HCS12 T-Board and provides 256KB
of static RAM, which can be accessed in the address window
$4000..$7FFF (one page at a time).

User Manual

5

2. Quick Start
Nobody likes to read big manuals. For that reason we will summa-

rize the most important things in the following section. If you need
additional information, please refer to the more detailed sections of this
manual.

Here is how you can start:

w Please check the board for any damages due to transportation

w Connect the Evaluation Board via RS232 to a PC. The connec-
tion between HCS12 T-Board (interface SCI0, connector X2)
and PC is simply made using the flat ribbon cable which is in
the box.

w On the PC, start a Terminal Program. An easy to use Terminal
Program is OC-Console, which is available at no charge from
our Website!

w Select a baudrate of 9600 Bd. Disable all hardware or software
protocols.

w Caution: make sure that jumper JP1 is in position 1-2! (this is
the factory default setting)

w Connect a power supply to X1, delivering approx. 9V (8..12V,
center pin positive)

w Please note: wall plug power supplies are usually not stabilized
and they provide a voltage that is higher than the nominal (full
load) voltage. Therefore, in order to get "real" 9V, using 6V or
7.5V is normally sufficient. The higher the input voltage, the
more heat will be produced by IC3.

w Once powered up, the Monitor program will start, display a
message and await your commands. For a list of monitor
commands, please refer to the D-Bug12 Reference Guide (see
seperate document on the accompanying CD-ROM)

We hope you will enjoy working with the HCS12 T-Board!

HCS12 T-Board

6

3. Parts Location Diagram

Place Plan - Component Side

User Manual

7

Solder Bridges on the solder side of the PCB

HCS12 T-Board

8

4. Jumpers and Solder Bridges

Jumpers

Please locate jumper positions using the above parts location
diagram.

JP1: PWR
1-2* Voltage regulator IC3 delivers 5V, input voltage to

apply at connector X1: 8..12V DC
2-3 Voltage regulator IC3 is bypassed, input voltage to

apply at connector X1: 5V DC (must be stabilized!)

Solder Bridges

On the solder side of the module, the following solder bridges can
be found:

BR1: VRH
open external supply of VRH required
closed* VRH connected to VDDA (VCC) on-board

BR2: XCLKS
open* Quarz crystal Q1 and internal Colpitts oscillator

deliver system clock
closed disable Colpitts oscillator and enable external clock

source driving EXTAL pin

BR3: XOSC
open* Quarz crystal Q1 and internal Colpitts oscillator

deliver system clock
closed Oszillator IC6 (optional) delivers external clock to

EXTAL

* = Factory Default Setting

User Manual

9

BR4: TX1E
open* Port pin TXD1 (PS3) freely available
closed TXD1 connected to RS232 Transceiver IC4

BR5: RX1E
open* Port pin RXD1 (PS2) freely available
closed RXD1 connected to RS232 Transceiver IC4

* = Factory Default Setting

HCS12 T-Board

10

5. Mechanical Dimensions
The following table summarizes the mechanical dimensions of the

HCS12 T-Board. The values provide a basis for the design of carrier
boards etc. Please note: Always check all mechanical dimensions using
the real hardware module!

The refernce point (0,0) is located at the "south/west" corner of the
PCB. The PCB is orientated vertically, as shown in the Parts Location
Diagram (see above).

All data for holes/drills (B) refer to the center of the hole/drill,
connectors (H) are referenced by pin 1.

3,8003,200PCB

3,6500,150B4

3,6503,050B3

0,1503,050B2

0,1500,150B1

2,7502,250H4

1,1502,550H3

0,5500,950H2

2,4500,650H1

Y
Inch

X
Inch

User Manual

11

6. Circuit Description

Schematic Diagram

To ensure best visibility of all details, the schematic diagram of the
HCS12 T-Board is provided as a separate document.

Controller Core, Power Supply

The nominal operating voltage of the MC9S12DG256 is 5V. This
MCU (IC1) has three supply pin pairs: VDDR/VSSR, VDDX/VSSX
and VDDA/VSSA. Internally, the MCU uses a core voltage of only
2.5V. The necessary voltage regulator is already included in the chip, as
well as 5V I/O-buffers for all general-purpose input/output pins. There-
fore, the MCU behaves like a 5V device from an external point of view.
There is just one exception: the signals for oscillator and PLL are based
on the core voltage und must not be driven by 5V levels. High level on
the pin VREGEN is needed to enable the internal voltage regulator.

The three terminal pairs mentioned above must be decoupled
carefully. A ceramic capacitor of at least 100nF should be connected
directly at each pair (C17, C18, C13). It is recommended to add a 10µF
(electrolytic or tantalum) capacitor per node, especially if some MCU
port pins are loaded heavily (C15, C16, C14). Special care must be
taken with VDDA, since this is the reference point (VDDA/2) for the
internal voltage regulator.

The internal core voltage appears at the pin pairs VDD1/VSS1,
VDD2/VSS2 and VDDPLL/VSSPLL, which have to be decoupled as
well (C10, C11, C5). A static current draw from these terminals is not
allowed. This is especially true for VDDPLL, which serves as the
reference point for the external PLL loop filter combination (R3, C3,
C4).

There are two MCU pins (VRH/VRL) to define the upper and
lower voltage limits for the internal analog to digital (ATD) converter.
While VRL is grounded, VRH is connected to VDDA via solder bridge
BR1. C12 is used for decoupling. VRH can be supplied externally after
opening solder bridge BR1. This can be useful if the main supply is not

HCS12 T-Board

12

in the desired tolerance band or if the ATD should work with a
reference value lower than 5V. VRH must not exceed VDDA, regard-
less of the selected supply mode.

The TEST pin is used for factory testing only, in an application
circuit this pin always has to be grounded.

Reset Generation

/RESET is the MCU's active low bidirectional reset pin. As an
input it initializes the MCU asynchronously to a known start-up state.
As an open-drain output it indicates that a system reset (internal to
MCU) has been triggered. The HCS12 MCUs already contain on-chip
reset generation circuitry including power-on reset, COP watchdog
timer and clock monitor. It is, however, necessary to add an external
Low Voltage Inhibit (LVI) circuit, also referred to as "reset controller".
The task of this reset controller is to issue a stable reset condition if the
power supply falls below the level required for proper MCU operation.

To prevent collisions with the bidirectional /RESET pin of the
MCU, the LVI circuit IC2 has an open-drain output. In the inactive state
it is pulled-up high by the resistor R6. The detector treshold of IC2 is
typically 4.6V, which is slightly higher than the required minimum
MCU operating voltage of 4.5V.

Furthermore, IC2 is capable of stretching the reset output to filter
out short pulses on the power supply effectively. The duration of that
delay can be selected using the capacitor C19. A value of 100nF results
in a delay of approx. 50..80ms.

It is important to note, that this delay will only be applied during a
power cycle event. IC2 will not stretch pulses coming from the MCU's
internal reset sources. This is essentially important, since otherwise the
MCU would not be able to detect the source of a reset. This would
finally lead to a wrong reset vector fetch and could result in a system
software crash. Please be aware, that also a capacitor on the reset line
would cause the same fatal effect, therefore external circuitry connected
to the /RESET pin of a HC12/HCS12 MCU should never include a
large capacitance!

User Manual

13

Clock Generation and PLL

The on-chip oscillator of the MC9S12DG256 can generate the
primary clock (OSCCLK) using a quartz crystal (Q1) connected
between the EXTAL and XTAL pins. The allowed frequency range is
0.5 to 16MHz. As usual, two load capacitors are part of the oscillator
circuit (C1, C2). However, this circuit is modified compared to the
standard Pierce oscillator that was used for the HC11 or most HC12
derivatives.

The MC9S12DG256 uses a Colpitts oscillator with translated
ground scheme. The main advantage is a very low current consumption,
though the component selection is more critical. The HCS12 T-Board
circuit uses a 16MHz automotive quartz from NDK together with two
load capacitors of only 3.9pF. Furthermore, special care was taken for
the PCB design to introduce as little stray capacitance as possible in
respect to XTAL and EXTAL.

With an OSCCLK of 16MHz, the internal bus speed (ECLK)
becomes 8MHz by default. To realize higher bus clock rates, the PLL
has to be engaged. The MC9S12DG256 can be operated with a bus
speed of up to 25MHz, though most designs use 24MHz because this
value is a better basis to generate a wide range of SCI baud rates.

A passive external loop filter must be placed on the XFC pin. The
filter (R3, C3, C4) is a second-order, low-pass filter to eliminate the
VCO input ripple. The value of the external filter network and the
reference frequency determines the speed of the corrections and the
stability of the PLL. If PLL usage is not required, the XFC pin must be
tied to VDDPLL.

The choice of filter component values is always a compromise over
lock time and stability of the loop. 5 to 10kHz loop bandwidth and a
damping factor of 0.9 are a good starting point for the calculations.
With a quartz frequency of 16MHz and a desired bus clock of 24MHz, a
possible choice is R3 = 4.7k and C3 = 22nF. C4 should be approxi-
mately (1/20..1/10) x C3, e.g. 2.2nF in our case. Please refer to the
chapter "XFC Component Selection" in the MC9S12DP256B Device

HCS12 T-Board

14

User Guide for details on how to calculate loop filter values for other
system configurations.

The following source listing shows the steps required to initialize
the PLL:

//===
// File: S12_CRG.C - V1.00
//===

//-- Includes ---

#include <hcs12dp256.h>
#include "s12_crg.h"

//-- Code ---

void initPLL(void) {

 CLKSEL &= ~BM_PLLSEL; // make sure PLL is *not* in use
 PLLCTL |= BM_PLLON+BM_AUTO; // enable PLL module, Auto Mode
 REFDV = S12_REFDV; // set up Reference Divider
 SYNR = S12_SYNR; // set up Synthesizer Multiplier
 // the following dummy write has no effect except consuming some cycles,
 // this is a workaround for erratum MUCTS00174 (mask set 0K36N only)
 // CRGFLG = 0;
 while((CRGFLG & BM_LOCK) == 0) ; // wait until PLL is locked
 CLKSEL |= BM_PLLSEL; // switch over to PLL clock
 }

//===

An alternative, external clock source can be used for the
MC9S12DG256 if the internal oscillator and PLL are disabled by
applying a low level to the /XCLKS pin during reset. Since this option
is not used by default on the HCS12 T-Board Controller Module,
/XCLKS must be tied to high level, which is realized by a MCU-inter-
nal pull-up resistor. Please note, that other HCS12 derivatives may have
different features associated with the /XCLKS pin.

Operating Modes, BDM Support

Three pins of the HCS12 are used to select the MCU operating
mode: MODA, MODB and BKGD (=MODC). While MODA and
MODB are pulled low (R4, R5) to select Single Chip Mode, BKGD is
pulled high (R7) by default. As a consequence, the MCU will start in
Normal Single Chip Mode, which is the most common operating mode
for application code running on the HCS12.

The HCS12 operating mode used for download and debugging is
called Background Debug Mode (BDM). BDM is active immediately
out of reset if the mode pins MODA/MODB/BKGD are configured for

User Manual

15

Special Single Chip Mode. This is done by pulling the BKGD pin low
during reset, while MODA and MODB are pulled-down as well.

Because only the BKGD level is different for the two modes, it is
quite easy to change over. However, there is no need to switch the
BKGD line manually via a jumper or solder bridge because this can be
done by a BDM-Pod (such as ComPOD12) attached to connector X6A.
A BDM-Pod is required for BDM-based download and/or debugging
anyway, so it can handle this task automatically, usually controlled by a
PC-based debugging program.

The 6-pin header X6A uses the suggested standard BDM12
connector layout. Connector X6B carries additional MCU signals,
which are normally not needed for BDM12 debugging. Some
debuggers, however, provide additional features, which rely on the
presence of these supplemental signals.

Integrated A/D-Converter

The MC9S12DG256 contains two 10-bit Analog-to-Digital Conver-
ter modules. Each module (ATD0, ATD1) provides eight multiplexed
input channels.

VRH is the upper reference voltage for all A/D-channels. On the
HCS12 T-Board, VRH is connected to VDDA (5V) through solder
bridge BR1. After opening BR1, it is possible to use an external
reference voltage.

The following example program shows the initialization sequence
for the A/D-converter module ATD0 and a single-channel conversion
routine. The source file S12_ATD.C also contains some additional
functions for the integrated ATD module.

HCS12 T-Board

16

//===
// File: S12_ATD.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <hcs12dp256.h>
#include "s12_atd.h"

//-- Code ---

// Func: Initialize ATD module
// Args: -
// Retn: -
//
void initATD0(void) {

 // enable ATD module
 ATD0CTL2 = BM_ADPU;
 // 10 bit resolution, clock divider=12 (allows ECLK=6..24MHz)
 // 2nd sample time = 2 ATD clocks
 ATD0CTL4 = BM_PRS2 | BM_PRS0;
 }

//---

// Func: Perform single channel ATD conversion
// Args: channel = 0..7
// Retn: unsigned, left justified 10 bit result
//
UINT16 getATD0(UINT8 channel) {

 // select one conversion per sequence
 ATD0CTL3 = BM_S1C;
 // right justified unsigned data mode
 // perform single sequence, one out of 8 channels
 ATD0CTL5 = BM_DJM | (channel & 0x07);
 // wait until Sequence Complete Flag set
 // CAUTION: no loop time limit implemented!
 while((ATD0STAT0 & BM_SCF) == 0) ;
 // read result register
 return ATD0DR0;
 }

//---

User Manual

17

Integrated EEPROM

The internal EEPROM module of the MC9S12DG256 contains
4KB of memory. It consists of 1024 sectors with 4 bytes (32 bits) per
sector. For erasure, any single sector can be selected. Programming is
done by words (2 bytes). Read accesses can be made to any word or
byte.

After reset, the EEPROM module of the MC9S12DG256 is mapped
to address 0x0000. In the lower 1KB area (0x0000..0x03FF), control
registers take precedence over EEPROM. In order to use the full
EEPROM space, the EEPROM module can be relocated (see INITEE
control register).

In the following example, the EEPROM module is left at it's
default position. The initialization sequence just takes care for setting
up the EEPROM Clock Divider according to the quartz crystal frequen-
cy. The write function wrSectEETS() copies two words (4 bytes) from
source address src to EEPROM address dest. dest must be identical to
an EEPROM sector border (aligned 32 bit value). If the sector is not
erased (erased state = 0xFFFFFFFF), the routine will perform a sector
erase before writing to the sector.

The access functions readItemEETS() and writeItemEETS()
provide a more abstract way to deal with EEPROM contents. Instead of
using certain addresses, which must be part of the EEPROM address
range, these routines use abstract "item numbers", with each item consi-
sting of a variable amount of data (1 to 4 bytes).

HCS12 T-Board

18

//===
// File: S12_EETS.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <hcs12dp256.h>
#include "s12_eets.h"

//-- Code ---

void initEETS(void) {

 ECLKDIV = EETS_ECLKDIV; // set EEPROM Clock Divider Register
 }

//---

INT8 wrSectEETS(UINT16 *dest, UINT16 *src) {

 // check addr: must be aligned 32 bit
 if((UINT16)dest & 0x0003) return -1;
 // check if ECLKDIV was written
 if((ECLKDIV & BM_EDIVLD) == 0) return -2;
 // make sure error flags are reset
 ESTAT = BM_PVIOL | BM_ACCERR;
 // check if command buffer is ready
 if((ESTAT & BM_CBEIF) == 0) return -3;
 // check if sector is erased
 if((*dest != 0xffff) || (*(dest+1) != 0xffff)) {
 // no, go erase sector
 *dest = *src;
 ECMD = EETS_CMD_SERASE;
 ESTAT = BM_CBEIF;
 if(ESTAT & (BM_PVIOL | BM_ACCERR)) return -4;
 while((ESTAT & BM_CBEIF) == 0) ;
 }
 // program 1st word
 *dest = *src;
 ECMD = EETS_CMD_PROGRAM;
 ESTAT = BM_CBEIF;
 if(ESTAT & (BM_PVIOL | BM_ACCERR)) return -5;
 while((ESTAT & BM_CBEIF) == 0) ;
 // program 2nd word
 *(dest+1) = *(src+1);
 ECMD = EETS_CMD_PROGRAM;
 ESTAT = BM_CBEIF;
 if(ESTAT & (BM_PVIOL | BM_ACCERR)) return -6;
 while((ESTAT & BM_CCIF) == 0) ;
 return 0;
 }

//---

INT8 writeItemEETS(UINT16 item_no, void *item) {

 if(item_no >= EETS_MAX_SECTOR) return -7;
 item_no = EETS_START + (item_no << 2);
 return wrSectEETS((UINT16 *)item_no, (UINT16 *)item);
 }

//---

INT8 readItemEETS(UINT16 item_no, void *item) {

 if(item_no >= EETS_MAX_SECTOR) return -7;
 item_no = EETS_START + (item_no << 2);
 *((UINT16 *)item) = *((UINT16 *)item_no);
 *(((UINT16 *)item)+1) = *(((UINT16 *)item_no)+1);
 return 0;
 }

//===

User Manual

19

Indicator-LEDs

The LED bar D4 consists of ten single LEDs. The MCU controls
eight of them by port pins PB[0..7]. LED number 9 can be activated by
connecting test point TP1 with ground (thus, providing a simple logic
level tester). The remaining LED is always on if power supply is
present.

If Port B is needed for another purpose (e.g. as part of the bus inter-
face), LED bar D4 kann easily be removed from it's socket.

To control the LED bar, some simple macros can be used, as shown
in the following C header file:

//===
// File: S12TB_LED.H - V1.00
//===

#ifndef __S12TB_LED_H
#define __S12TB_LED_H

//-- Macros ---

#define initLED() PORTB |= 0xff; DDRB |= 0xff
#define offLED(n) PORTB |= (0x01 << n)
#define onLED(n) PORTB &= ~(0x01 << n)
#define toggleLED(n) PORTB ^= (0x01 << n)

//-- Function Prototypes --

/* module contains no code */

#endif //__S12TB_LED_H ==

D3 contains two additional LEDs. They can be switched on or off
via ports PP0 and PP1. By using the PWM function available on these
port pins, the color of the two single LED units installed in D3 (red and
green) can be mixed.

Buzzer

The sound transducer (buzzer) SP1 is controlled by the MCU's port
pin PT2.

PT2 is internally connected to one of the eight timer channels of
the MCU. Frequency generation is realized using the Output-Compare
function of the timer system.

The following example demonstrates, how Output-Compare inter-
rupts can be used to generate oscillations in the audible range:

HCS12 T-Board

20

//===
// File: ACPRD_FREQOUT.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include "hcs12dp256.h"
#include "s12_ect.h"
#include "s12_crg.h" // contains S12_ECLK value
#include "acprd_freqout.h"

//-- Static Vars --

UINT16 freqout_tticks;

//-- Code ---

void initFreqOut(void) {

 // make sure timer is enabled
 TSCR1 |= BM_TEN;
 // prescaler = 2**4 = 16
 TSCR2 = 0x04;
 // select Output Compare function for channel 2
 TIOS |= BM_2;
 DDRT |= BM_2;
 // enable Interrupt for channel 2
 TIE |= BM_2;
 // timer disconnected from PT2 pin
 TCTL2 &= ~(BM_OM2 | BM_OL2);
 }

//---

// period is in µs
//
void setFreqOut(UINT16 period) {

 UINT16 tticks;

 tticks = period * (S12_ECLK / 2000000L);
 tticks /= TIMER_TCNT_PRE;

 if(period == 0) {
 // disconnect PT2 pin
 TCTL2 &= ~(BM_OM2 | BM_OL2);
 }
 else {
 // connect PT2 pin
 TCTL2 |= BM_OL2;
 }
 freqout_tticks = tticks;
 }

//---

// OC2 toggles buzzer
//
#ifdef METROWERKS_C
interrupt
#endif
#ifdef IMAGECRAFT_C
#pragma interrupt_handler isrOC2
#endif
void isrOC2(void) {

 TC2 += freqout_tticks;
 TFLG1 = BM_2; // clear Intr flag
 }

//===

User Manual

21

Input Devices

Two push button switches are connected to port T of the MCU.
PT0 detects the state of S2, PT1 reads S3. Port T inputs can generate an
interrupt.

The DIP switch SW1 contains eight independent switches. They
are connected to Port H. If this port is required for other tasks, the DIP
switch can be removed from the socket (or simply set all switches to
OFF position).

Potentiometer RT1 can be used to select an voltage between GND
and VCC as an input for PAD02, which is one of the 16 A/D-Converter
inputs of the MC9S12DG256. For A/D-Converter operation, please
refer to the ATD description above.

RS232 Interface

The MC9S12DG256 provides two asynchronous serial interfaces
(SCI0, SCI1). Each interface has one receive line and one transmit line
(RXDx, TXDx). Handshake lines are not provided by the SCI module,
though they can be added by using general purpose I/O port lines if
required.

On the HCS12 T-Board, SCI0 serves as the primary RS232 inter-
face. IC4 is an industry standard RS232 line transceiver circuit. In
addition to the receive and transmit lines of SCI0 (RXD0, TXD0), the
port pins PS2 (=RXD1) and PS3 (=TXD1) can be used as hardware
handshake lines (provided that SCI1 is not used in the application). To
activate the handshake feature, the solder bridges BR4 and BR5 have to
be closed.

To connect the HCS12 T-Board to a PC, a 10-wire flat ribbon cable
can be used. The cable must have a 10-pin female header connector at
the HCS12 T-Board side (X2) and a female Sub-D9 connector at the PC
side.

The following code example shows how to use SCI0 in polling
mode. (Note: for using SCI interrupts, please refer to the appropriate
mask set errata information document for the MC9S12DP256B)

HCS12 T-Board

22

//===
// File: S12_SCI.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <hcs12dp256.h>
#include "s12_sci.h"

//-- Code ---

void initSCI0(UINT16 bauddiv) {

 SCI0BD = bauddiv & 0x1fff; // baudrate divider has 13 bits
 SCI0CR1 = 0; // mode = 8N1
 SCI0CR2 = BM_TE+BM_RE; // Transmitter + Receiver enable
 }

//---

UINT8 getSCI0(void) {

 while((SCI0SR1 & BM_RDRF) == 0) ;
 return SCI0DRL;
 }

//---

void putSCI0(UINT8 c) {

 while((SCI0SR1 & BM_TDRE) == 0) ;
 SCI0DRL = c;
 }

//---

IF-Module Connection

On the HCS12 T-Board, SCI1 serves as a second, universal (TTL
level) serial interface. It is possible to connect an IF-Module at X3 in
order to provide an external physical interface for SCI1.

IF-Modules are serial interface modules, having a standardized
connector definition. They are available for different physical interface
types, such as RS232, RS485, current-loop or LIN. IF-Modules can be
connected to X3 using a 10-wire flat ribbon cable.

The I/O signals PM6, PM7 and PH0 are associated to SCI1 as
handshake lines on the HCS12 T-Board. If no IF-Module is connected,
these signals (including RXD1 and TXD1) can be used as general-pur-
pose I/Os. They are accessible at connector X4 and X2, respectively.

User Manual

23

SPI Ports

The MC9S12DG256 provides three independent SPI-Ports. The
first SPI port is designated SPI0 and consists of four individual signals:
MISO, MOSI, SCK and /SS (MCU port pins PS4 to PS7). These signals
are not used on-bord the HCS12 T-Board, though they can be accessed
through the header ring.

The following listing demonstrates some basic functions (initializa-
tion, 8-bit data transfer) for the SPI-Port SPI0:

//===
// File: S12_SPI.C - V1.00
//===

//-- Includes ---

#include "datatypes.h"
#include <hcs12dp256.h>
#include "s12_spi.h"

//-- Code ---

void initSPI0(UINT8 bauddiv, UINT8 cpol, UINT8 cpha) {

 DDRS |= 0xe0; // SS,SCK,MOSI Output
 SPI0BR = bauddiv; // set SPI Rate
 // enable SPI, Master Mode, select clock polarity/phase
 SPI0CR1 = BM_SPE | BM_MSTR | (cpol ? BM_CPOL : 0) | (cpha ? BM_CPHA : 0);
 SPI0CR2 = 0; // as default
 }

//---

UINT8 xferSPI0(UINT8 abyte) {

 SPI0DR = abyte; // start transfer
 while((SPI0SR & BM_SPIF) == 0) ; // wait until transfer finished
 return(SPI0DR); // read back data received
 }

//===

IIC-Bus

The port pins PJ6 and PJ7 grant access to the Inter-IC-Bus module
(IIC/I2C/I2C) of the MC9S12DG256. Since the IIC-Bus is implemented
as a hardware module, an IIC software emulation is obsolete.

For the two IIC-Bus signals (SDA, SCL), pull-up resistors are
required. They must be provided externally.

The IIC-Bus signals are acessible at X5.

HCS12 T-Board

24

CAN Interface

The MC9S12DG256 contains two independent CAN-Modules,
designated as CAN0 and CAN4.

CAN0 is accessed over port pins PM0 and PM1. IC5 serves as a
CAN physical bus interface. It is a high-speed interface chip commonly
used in industry applications. R18 determines the slope control setting.
R19 is a termination resistor, required if the HCS12 T-Board is the last
node in a CAN bus chain. Close the connection between pins 1 and 2 of
X4 in this case, otherwise keep it open.

For CAN4, there is no physical driver provided on the HCS12
T-Board. It can be added externally through port pins PJ6 and PJ7.
However, in this case a conflict with the IIC-Bus module will occur,
since both functions share the same two pins. If IIC and CAN4 have to
be used at the same time, CAN4 can be re-routed to port pins PM4/5 or
PM6/7 by setting the re-routing control register MODRR accordingly.

User Manual

25

7. Application Hints

HCS12 T-Board as BDM-Debugger

Motorola's D-Bug12 monitor software can be operated in two diffe-
rent modes. In EVB mode, the MCU executing the monitor software is
identical to the target MCU. In Pod mode however, the HCS12 T-Board
serves as an (intelligent) interface between a Host-PC and an HC(S)12
target controller.

To maintain compatibility to Motorola's "Barracuda"-EVB, and in
order to be able to operate D-Bug12 in Pod-Mode, the HCS12 T-Board
provides two dedicated mode jumpers (W3, W4) and a BDM-Out
connection (X7). The default setting of W3 and W4 is position 2-3
(0-level at PAD00 and PAD01). With this setting, the software starts in
EVB-Mode (normal monitor mode). Pod mode can be selected by
setting W4 to position 1-2.

Operating instructions for the D-Bug12 software can be found in
the D-Bug12 Reference Guide (see accompanying CD-ROM).

Behaviour after Reset

As soon as the reset input of the microcontroller is released, the
MCU reads the Interrupt Vector at memory address $FFFE/F and then
jumps to the address found there.

In the default delivery condition of the HCS12 T-Board, the Flash
module of the MCU contains Motorola's Monitor Program D-Bug12.
The reset vector points to the start of this Monitor Software. As a result,
the monitor will start immediately after reset.

HCS12 T-Board

26

Startup Code

Every Microcontroller firmware starts with a number of hardware
initialization commands. For the HCS12 T-Board, only setting up the
stack pointer is crucial. While it was important for HC12 derivatives to
disable the Watchdog, the COP Watchdog of HCS12 devices is already
disabled out of reset.

Additional Information on the Web

Additional information about the HCS12 T-Board Controller
Module will be published on our Website, as it becomes available:

http://elmicro.com/hcs12tb.html

User Manual

27

8. Memory Map
The memory map of the MC9S12DG256 can be modified by the

application program during runtime. Out of reset, the following default
memory map is valid:

16KB Flash
(equals Page $3F)$FFFF$C000

16KB Flash
(any Page $30..$3F, controlled by PPAGE)

$BFFF$8000

16KB Flash
(equals Page $3E)

$7FFF$4000

12KB RAM$3FFF$1000

4KB EEPROM (Area $0000-$03FF = 1KB hidden
by Control Registers)$0FFF$0400

Control Registers$03FF$0000

RessourceEndBegin

HCS12 T-Board

28

9. RAM Expansion (Option)
RAM.Bo256 is an optional RAM add-on board which can be

plugged directly onto the header connectors of an HCS12 T-Board or a
Motorola "Barracuda"-EVB. The add-on board provides 256KB of
static RAM in a paged manner.

Before making use of the memory expansion, it is necessary to
initialize the controller's external bus interface. The MCU starts in
Normal Single Chip Mode. The configuration of the bus interface,
including address/data and bus control lines (ports A, B, E and K), is
done by software commands.

The final step is to switch over to Expanded Mode by accessing the
MODE register. The MCU will then "see" the external RAM in the
address range $4000..$7FFF. Specific portions (pages) of the external
RAM can be selected by setting PORTK. Since one page contains
16KB, the total number of pages is 16 (16 x 16KB = 256KB).

The following listing summarizes all necessary steps:

 PORTK = 0xFF; // Port K High

 DDRK = 0xFF; // Port K Output

 MISC = 0x03; // set ROMHM (keep ROMON)

 PEAR = 0x0C; // enable /LSTR and R/W, stretch=0

 MODE = 0x0E; // switch to Normal Expanded Wide Mode

After initialization is finished, the desired RAM bank can be selec-
ted by writing to PORTK[0..3].

Please note, that RAM.Bo256 was designed for experimental use
only. It is not intended for any industrial applications.

Additional information about the RAM.Bo256 project can be found
on the Web at:

http://hc12web.de/rambo256/

User Manual

29

