Application Note

Report No:

AN101

Title:

In-System Programming (ISP) of the Atmel
AVR FLASH Microcontroller Family using the
SPI Programming Interface

Author: Date: Version Number:
John Marriott 11" Feb 09 1.17
Abstract:

This application note describes how to develop and implement In-System Programming (ISP) support
for the Atmel AVR microcontroller family using the ‘SPI Programming Interface’. The document details
how to make a ‘Programming Project’ which will operate on any Equinox ISP programmer. A full
description of how to implement In-System Programming (ISP) of the Atmel AT89S, AT90S,
AT90USB, ATmega and ATtiny AVR FLASH Microcontroller is also included. The application note
describes the physical connections required from the programmer to the target Microcontroller and
also details the different ISP Header Connector pin-outs which are currently available.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be
changed without prior notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not
convey nor imply any license under patent or other industrial or intellectual property rights

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 1
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

Contents
L0 INErOAUCTION e 4
1.1 Programmers SUPPOITEMuuuuuuuuueuuueeuienuueeueeennenneeenneennennneenneenneennnennnsnnnsnnnnnnnsnnnsnnnnnnnnnnnnnnsennes 4
I o= 0] o oL PP 5
1.3 SPI AIGOMthmM OVEIVIEWuuviiiiiiiiiiiiiiiiiiiiiiite e saaaaaasaass s sanas s nnasnnnsnnnnnnnnrrsrnnes 6
1.4 JTAG AlGOITNM OVEIVIEWeeiiiiieiiiiitee ettt e e e e e et e e e e e e e s e e et e e e e e e s annbbreeeeeeennnes 7
2.0 SPIProgramming AlIGOTITRM ... e e 8
2.1 Overview of the SPI Programming INterfacCe........ccoooooeieiiiiieieeeccce e 8
2.2 Atmel AVR Microcontroller - SPI IMplementationcoooiiiiiiiiiieeiiiiieieeee e 9
2.3 Atmel AT90S AVR MiICIOCONTIOIEIS ... 10
2.4 Atmel ATmega AVR MICIOCONTIOIEIS........ccoiieiiiie e e e e 11
2.4.1 Overview of possible ATmega PiN-0ULScccoeiiiiiiiiie e, 11
2.4.2 ATmega AVR - Standard SPI PiN-0OUL............cooiiiiiiiiiiiieee e 12
2.4.3 ATmega AVR - UART SPI PiN-OULcooiiiiiiiiiie et e e e e e 13
2.5 ISP Header Selection Chart (DY NEAAE).........uuuuiuiii e 14
3.0 Creating an SPI Programming PrOjeCT..........uuuuuuiriiiiiiiiiiiiiiiiiiiiiieirereeeieensrresreee ... 16
G TR0 I 11T o= 16
3.2 Information required to create an SPI ProjecCt..........ccooivviiiiiiii e 16
3.3 Creating an EDS (DeVelOPMENT PrOJECE)uiiiieei ittt ettt 17
3.3.1 Launching EDS and selecting a Target DeViCecoooviiiiiiiiiiiiiieeeee 17
3.3.2 Target OSCIllator SEHINGSccvvuiiii i e e e e e e e e e e er e e e e e e eeeennnanas 18
3.3.3 Target System — Power Supply Settings ... 19
3.3.4 Specifying the FLASH (Code) File........c..uuiiiiiiieiiiiie e 20
3.3.5 Specifying the EEPROM (Data) File...........ciiiiiiiiieeiiie et e e e 21
3.3.6 Launching EDS at the end of the EDS Wizard.................c.ccc 22
3.4 Testing an SPI Project in Development (EDS) MOdE..........cooviiiiiiiiiiiieiiiiieeee e 23
RIS o I oo =TT g 1T o 1Yo o = R 24
5.1 OVBIVIBW. ..o 24
3.5.2 HArdWare SPIMOEcooiiiiiiiiiiiie ettt e e e e e st e e e e e e e e e e 24
3.5.3 Software SPIMOCE........cooo o 24
3.6 UsINg ‘Hardware SPI MOUEc..oouiiiiii et s e e e e e e et s s e e e e e e e eaeab s e e e e eeeeanrnnnnes 25
3.8. L OVEBIVIBW...ceiiieeiiiiiiit ettt ettt e oo oottt et e e e e e e e bbb et e e e e e e e e e s bbb bt e e e e e e e e e s nnbbneeeeeeaanns 25
3.6.2 Optimum SPI Frequencies for each programmer...........c.ccooviiiiiiiiiieee e 26
3.7 USING ‘SOftWAIE SPI MOUE ... e anaes 27
3.8 Choosing the fastest posSIble SPI frEQUENCY.........uuuuiiceeece e 28
Bi8.L OVBIVIBW. ... 28
3.8.2 Programming the CKSEL Fuses to select a faster Oscillator Frequency........................ 28
3.8.3 Creating a Standalone Project which programs the fuses before programming the FLASH
T EEPRODM ...ttt e ettt e e oo ettt e e e e e et e e e e e e et eea e s 29
3.9 Testing SPI communication with the Target Chip ... 30
3.10 Programming the FLASH AFCaciii ittt e e e e s e e e e e e e eanaaanas 31
3.11 Programming the EEPROM ANiieeiiee e ettt ettt ettt n e aa e e 33
3.12 Erasing the FLASH / EEPROM @IEa.........uuutiiiiiiiiiiiiiiiiiieee ettt e e 35
3.12.1 Erasing the FLASH area..........cooo oo 35
3.12.2 Erasing the EEPROM area — special considerationsccccceeeeiieeevieeviiiiinseeeeeeeennnns 35
3.13 Programming the Configuration FUSEScouiiiiiiiiiiieccee e 36
TR G T R @ 1Y oV = SR 36
3.13.2 Reading the Fuses from a Target DEVICE.........cccvuuiuiieiii i e e 36
3.13.3 Verifying the Fuses of a Target DeVICEe ... 37
3.13.4 Writing the Fuses into @ Target DEVICEcoiiiiiiiiiiiiiieeee e 38
3.13.5 Using a ‘Fuse File’ to import Fuse settings into a project..........ccoveveeiiiiie 38
3.13.6 Importing Fuse Settings in HEX format from AVR Studiocc, 38
3.14 Programming the SECUILY FUSES...........uuiiiiiiiiieiei e 39

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 2
Version: V1.17 — 11" Feb 09

%Hiﬂ_e.!‘, Application Note

The Imbedded Solutions Company.

T 0t R @ 1Y oY= P 39

3.14.2 Reading the Security Fuses from a Target Devicecccccvvviii 40

3.14.3 Verifying the Security Fuses of @ Target DEVICE..........uuuiiiiiiiiiiiiiiiiiiieeee e 40

3.14.4 Writing the Security Fuses into a Target DeVICe...........coooviiiiiiiiiiiiie 41

3.14.5 Erasing the SECUNLY FUSEScciiiiiiiiiiiie e e e e e e e e e e ee e e 41

3.14.6 Using a ‘Fuse File’ to import Security Fuse settings into a projectcccccvvevvvevvveennen. 41

3.14.7 Importing Security Fuse Settings in HEX format from AVR Studio............ccccevvvvveeennen. 41

3.15 Exporting an EDS Project to a Standalone Projectcccooooeeviiiiiiiii e 42
4.0 Exporting / Importing Fuse Settings to / from File.......c.oooiiiiiiiii e 43
R O V=T AV = PSSR 43
4.2 Exporting the Fuse Settingsto a Fuse File.............o 43
4.3 Copying the Fuses from a Target DEVICEccoooeiii i 43
4.4 Importing the Fuse Settings from a FUSE File.........oooiiiiiiiii e 43
5.0 Importing Fuse Settings in HEX format from AVR StUdiOcoooiiiiiiiiiiiiiiiiieeeee e 44
DL OVBIVIBW . 44
5.2 Finding the AVR Studio ‘Hex Fuse Values' ... 44
5.3 Importing the AVR Studio ‘Hex Fuse Values’ into EQTOOISccoooveeiiieiiiieieee e 45
5.4 Importing the AVR Studio ‘Hex Security Fuse Values’ into EQTOOIScccevvviiiiiieevreeviinnnnnn. 48
6.0 Creating a StandalonNe PrOjJeCT.......cooiuiiiii i e e e e e e e e et e e e e e e eeaeaeennes 51
B.1 OVEBIVIEW ... e ettt et a e 51
6.2 Creating a Standalone Project from EDS (Development Mode) ... 51
6.3 Add Project File to a new ProjeCt CoIleCiONcooiviiiiiiii e 51
6.4 Uploading a ProjeCt t0 @ PrOgramMIEr..........uuuiiieaeiiiiiieeeeeeeee e s st e e e e e e e s s e e e e e e e s snnneeeeees 52
6.5 Re-testing a Project in EDS (Development Mode) ..o 53

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 3
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

1.0 Introduction

This application note describes how to develop and implement In-System Programming (ISP)
support for the Atmel AVR microcontroller family using the ‘SPI Programming Interface’. The
document details how to make a ‘Programming Project’ which will operate on any Equinox ISP
programmer. A full description of all connection methods required to implement In-System
Programming (ISP) of the Atmel AT89S, AT90S, AT90USB, ATmega and ATtiny AVR FLASH
Microcontroller is also discussed. The document describes the physical connections required from the
programmer to the target Microcontroller and also details the different ISP Header Connector pin-outs
which are currently available.

Please note:
e Programming of the Atmel AVR microcontroller family using the ‘JTAG Programming
Interface’ is covered in Application Note — AN105.
e The Atmel ATtiny AVR Family features both a ‘Low Voltage’ and ‘High Voltage’ Serial
Programming Modes. Please refer to Application Note - AN104 for further details.

1.1 Programmers supported

Most Equinox ISP Programmers support programming of Atmel AVR microcontrollers using the ‘SPI
Programming Interface’ as standard — see table below. It is also possible to upgrade many of these
programmers to support programming via the ‘JTAG Programming Interface’.

Fig. 1.1 Equinox Programmer — SPI and JTAG ISP Support

Programmer SPI JTAG algorithms Upgrade Order Code
algorithms

EPSILON5S YES UPGRADE EPSILON5-UPG3

EPSILON5(AVR-JTAG) | NO YES N/A

FS2003 YES UPGRADE FS2003-UPG7

FS2009 YES UPGRADE FS2009-UPG7

FS2009(AVRJTAG) NO YES N/A

PPM3 MK2 YES UPGRADE + I0-CON-3 JTAG | PPM3A1-UPG7

Connector Module + SFM-
MAX-V1.3 Special Function
Module

PPM4 MK1 YES UPGRADE + IO-CON-3 JTAG | PPM4MK1-UPG7
Connector Module + SFM-
MAX-V1.3 Special Function
Module

ISPnano UPGRADE - | UPGRADE - TBC TBC
TBC

Key:
e YES - Enabled as standard
e UPGRADE - Chargeable license upgrade required
e TBC — Details to be confirmed (please e-mail sales@equinox-tech.com for further details.)

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 4
Version: V1.17 — 11" Feb 09

%Hiﬂ_e.!‘, Application Note

The Imbedded Solutions Company.

1.2 Device Support
Please refer to the latest Device Support List for the devices which are currently supported by the
Equinox range of programmers.

This can be found:

- as a Download available on the website:
Click on the Downloads tab. Under ‘Download Type’ choose Device Support Lists / Release
notes then click Search.

- Browsing on the Device Support tab under each product.

- Inthe latest version of EQ-Tools:
Launch EQ-Tools. Go to Programmer ; Create a Device Support.
All programmers and devices supported are listed in this document.
You will need the most recent EQ-Tools build version — please refer to the website for further
details.

Some ATmega devices such as the ATmega8(L) and ATmegal61(L) do not have a JTAG port and so
cannot support JTAG programming.

Please note:

e Devices with greater than 128kb of FLASH memory require a firmware upgrade to version
3.01 or above in order to support programming of the upper 128Kkb.

e Itis possible to program devices connected in a ‘JTAG Chain’ using firmware 3.05 or above.

e Please see Application Note — AN112 for instructions on updating your programmer
firmware.

e As a rule of thumb, only Atmel Atmega AVR devices with 16k bytes of FLASH or greater will
feature the JTAG Programming Interface.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 5
Version: V1.17 — 11" Feb 09

%Hiﬂ_e.!‘, Application Note

The Imbedded Solutions Company.

1.3 SPI Algorithm Overview

The SPI algorithm is a simple 3-wire interface which can be used to program most AVR
Microcontrollers. The advantages and disadvantages of this algorithm are detailed below.

Advantages

e The SPI algorithm is supported by almost all Atmel AVR microcontrollers including AT90S,
AT90CANXxxx, ATtiny and ATmega devices. This means that the same Programming Interface
can be used on any products containing any AVR microcontroller.

e The SPI Programming Interface uses only 3 SPI pins (MOSI, MISO, SCK) and the RESET pin.

e The SPI pins can be used to drive other circuitry such as LED’s and switches on the Target
Board as well as being used for ISP purposes. However, this will require careful design on the
Target Board to ensure that the programming signals are not compromised.

¢ In SPI Mode, it is possible to reprogram a single byte of the EEPROM area without having to
perform a Chip Erase first.

e The SPI algorithms are supported as standard on all Equinox ISP Programmers.

Disadvantages

e In general terms, the SPI algorithm is 3-4 times slower than the JTAG algorithm.

e When using the SPI algorithm, the clock used during programming is supplied from either the
AVR Internal RC Oscillator or from an external crystal / resonator. The programming SPI
speed is completely dependent on the speed of this oscillator.

e If the oscillator speed is slow, then the maximum SPI speed is seriously limited and the overall
programming will be very slow.

e If the Clock Selection Fuses are incorrectly programmed in SPI mode, then the chip may no
longer have a valid oscillator and so will not respond to the programmer. This can render the
chip unprogrammable except by physically removing it from the Target Board and using either
a JTAG or Parallel programmer to resurrect the correct Fuse Settings.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 6
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

1.4 JTAG Algorithm Overview

The JTAG algorithm provides a method of performing high-speed programming of an Atmel Atmega
AVR microcontroller. The same JTAG port can also be used for on-chip debugging of code using the
Atmel JTAG-ICE Debugger. The advantages and disadvantages of the JTAG algorithm are detailed

below.

Advantages
e The JTAG algorithm is approximately 3-4 times faster at programming compared to the SPI
algorithm.

e The programming time using JTAG for the EEPROM is significantly faster than the SPI
algorithm because in JTAG mode a ‘Page’ of EEPROM is programmed at a time rather than a
single byte. Each byte may take e.g. 9ms to program in SPI mode, where as a whole page of
e.g. 4 bytes may take 9ms to program in JTAG mode.

e The JTAG algorithm uses the same ‘JTAG Port’ as the Atmel JTAG-ICE Debugger. This
means that the same port can be used for both debugging during the development phase and
also programming during the production phase of the product.

e With the JTAG algorithm, the programming clock is supplied by the programmer and JTAG
logic inside the Target AVR device does not require any other clocking. This means that the
chip is not dependent on the settings of the ‘Clock Selection Fuses’ in JTAG Mode.

e InJTAG mode is it possible to change the ‘Clock Selection Fuses’ to any value and still
program the chip. (with the exception of the ‘JTAGEN' Fuse)

e Itis possible to use the JTAG port of the Target Microcontroller to perform in-circuit testing of
the microcontroller and surrounding circuitry. This testing is performed by shifting Test Data
through the JTAG port of the Target Microcontroller. A JTAG Test System is required to
perform this testing. It is not supported by any Equinox Programmer or the Atmel JTAG ICE.

e Itis possible to daisy-chain multiple JTAG devices on the JTAG bus in a so-called ‘JTAG
Chain’ and then select to program a particular device in the chain. This functionality is now
supported by Equinox programmers running firmware 3.05 and above.

Disadvantages

e The JTAG Programming Interface uses 5 pins: TCK, TDI, TDO, TMS and RESET.

e The JTAG pins of the microcontroller are not designed for off-board use and should not be
shared with any other circuitry on Target Board. This means that the JTAG port pins must be
dedicated for programming / debugging.

e InJTAG mode the EEPROM is divided into ‘Pages’ rather than ‘Single Bytes'. It is therefore
more complicated to program a single byte in the EEPROM as the entire page (usually 4 or 8
bytes) must be read back and then the single byte overlaid on top of this data and finally the
entire page is then re-programmed back into the EEPROM.

e InJTAG Mode, it is not possible to re-program any location in the EEPROM which is not OxFF
without first performing a Chip Erase operation. This means that if the EEPROM already
contains any data, it is not possible to re-program this data without erasing the entire chip first.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 7
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

2.0 SPI Programming Algorithm

2.1 Overview of the SPI Programming Interface

The SPI Programming Interface is a simple synchronous 3-wire communications bus which is
commonly used for control / data transfer between a Master Processor and a Slave Peripheral such
as an external SPI memory device — see figure 2.1.

Fig 2.1a — SPI Master / Slave example

Chip Select l
Chip Select
SPI
Master MOSI
Device MOSI Pl MOSI
§ SPI
(MASTER) SCK | Peripheral
SCK | sck |, Device
o} (SLAVE)
R
MISO T
MISO |« MISO
Fig 2.1b — SPI Signal names and directions
Signal Name Signal description Signal direction
(from Master)
MOSI Master OUT, Slave In Output
MISO Master IN, Slave OUT Input
SCK Serial Clock Output
Chip Select (CS) Chip Select Output

Data is transferred from the Master to the Slave using the MOSI (Master OUT, Slave In) signal line.
The Slave transfers data back to the Master using the MISO (Master IN, Slave OUT) signal line. The
data transfer is clocked by the SCK (Serial Clock) signal line which is generated by the Master on the
SPI bus. The Slave uses the SCK signal to know when to sample the MOSI signal for valid data and
when to output valid data on the MISO signal line.

Most SPI Slave devices have a ‘Chip Select’ signal which the Master asserts to select a particular
Slave device on the SPI bus. In the example above with only one Slave SPI device, the Master would
still have to assert the Chip Select line in order to communicate with the Slave device.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 8
Version: V1.17 — 11" Feb 09

%Hiﬂ_e.!‘, Application Note

The Imbedded Solutions Company.

2.2 Atmel AVR Microcontroller - SPI Implementation

Atmel have chosen the SPI interface to implement fast In-System Programming (ISP) of their AT90S,
ATmega and ATtiny AVR Microcontroller families. This implementation allows the on-chip FLASH,
EEPROM, Configuration Fuses and Security Fuses of a target AVR Microcontroller to be In-System
Programmed using a suitable external ISP Programmer or an-board SPI Master Controller — see fig
2.2a.

Fig 2.2a — ISP Programming Implementation of Atmel AVR Microcontrollers

RESET
Control pin
RESET/
Device MOS|
Programmer MOsI »| mosI
(SPI MASTER) § Atmel
SCK ' AVR
ScK »| sck |, Microcontroller
o} (SPI SLAVE)
R
MISO T
MISO |« MISO
Fig 2.2b — Programmer / Microcontroller - SPI Signal names and directions
Signal Name Signal description Signal direction Signal direction
(from Programmer) | (from Microcontroller)
MOSI Master OUT, Slave In Output Input
MISO Master IN, Slave OUT | Input Output
SCK Serial Clock Output Input
RESET Chip Select Output Input

The external Device Programmer is the SPI Bus Master and the AVR Microcontroller on the Target
System is the SPI Slave. The RESET control signal from the programmer is used to force the Target
Microcontroller to enter the so-called AVR ‘Serial Programming Mode’. For Atmel AVR
Microcontrollers, the programmer must drive the RESET pin LOW and then send a command on the
SPI bus to enter programming mode. This has the effect of resetting the target Microcontroller so it is
no longer running firmware (i.e. the user application ceases to execute).

Once the Target Device is in ‘Serial Programming Mode’, the external programmer can transfer
data to / from the target AVR device across the SPI bus. At the end of the programming cycle, the
programmer simply creates a RESET pulse and then the device should start to run the firmware
which has been programmed into it.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 9
Version: V1.17 — 11" Feb 09

Application Note

TECHNOLODIES

The Imbedded Solutions Company.

2.3 Atmel AT90S AVR Microcontrollers

The Atmel AT90S AVR Microcontroller Family use the standard SPI pins (MOSI, MISO, SCK) for In-
System Programming (ISP) — see fig. 2.3.

Fig 2.3a AT90Sxxxx AVR — ISP Connections

| PROG vCC }
Reset
|_PROG_RESET |— Gircuit
RESET Vce
| PROG_MOS| J——————p] MOsI s
’ Atmel
[PrROG_sck p——>] scx , ATI0SXxXXX
= P AVR
R Microcontroller
[PROG MISO J———] wiso '
Vss

| PROG_GND |}

Fig 2.3.b — AT90S AVR Microcontroller - SPI Signal names and directions

Programmer Signal description Signal Connect to Signal direction
Signal Name direction AVR (from
(from Microcontroller | Microcontroller)
Programmer) | Pin
PROG_MOSI Master OUT, Slave In Output MOSI Input
PROG_MISO Master IN, Slave OUT | Input MISO Output
PROG_SCK Serial Clock Output SCK Input
PROG RESET | RESET Output RESET Input

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family

Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

2.4 Atmel ATmega AVR Microcontrollers
2.4.1 Overview of possible ATmega pin-outs

The majority of devices in the Atmel ATmega AVR family conform to the standard SPI pin-out for In-
System Programming using the MOSI, MISO and SCK pins of the target device. However, there are
also a few devices which use the TXD pin as MISO and the RXD pin as MOSI during In-System
Programming. These derivatives are referred to as ‘UART SPI Pin-out’ devices. Special care must
be taken to route the programmer MOSI / MISO pins to the correct pins of the target AVR device
otherwise during In-System Programming will not function.

Please refer to the ‘Device Support’ table in section 1.2 for details of which ATmega devices feature
either the ‘Standard’ or ‘UART’ SPI pin-out. Please look up the device you are trying to program in
the table and then refer to relevant section for the correct ISP pin-out.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 11
Version: V1.17 — 11" Feb 09

Application Note

TECHNOLODIES

The Imbedded Solutions Company.

2.4.2 ATmega AVR - Standard SPI Pin-out

This pin-out is compatible with all ATmega devices which use the MOSI and MISO pins for In-System
Programming.

Fig. 2.4.2a ATmega — Standard Pin-out - ISP connections

| PROG vcC |
Reset
| _PROG_RESET |—) Circuit
RESET Vee
j——————p| wmosI
|__PROG_MOSI S Atmel
’ ATmega
| PROG SCK =P sck |, . AVR
= o Microcontroller
R (Standard
[PROG_ MISO Je—— miso | ' pin-out)
Vss

| PROG_GND |

Fig 2.4.2b — ATmega AVR — Standard Pin-out - SPI Signal nhames and directions

Programmer Signal description Signal Connect to Signal direction
Signal Name direction AVR (from
(from Microcontroller | Microcontroller)
Programmer) | Pin
PROG_MOSI Master OUT, Slave In Output MOSI Input
PROG_MISO Master IN, Slave OUT | Input MISO Output
PROG_SCK Serial Clock Output SCK Input
PROG_RESET RESET Output RESET Input

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family
Version: V1.17 — 11" Feb 09

Application Note

TECHNOLODIES

The Imbedded Solutions Company.

2.4.3 ATmega AVR - UART SPI Pin-out

This pin-out is compatible with the Atmel ATmega 64(L), ATmegalO3(L), ATmegal28(L),
ATmegal281, ATmega2561 and ATmegal69(L) devices which use the TXD and RXD pins for SPI
during In-System Programming. The standard SPI MOSI and MISO pins are not used at all during
In-System Programming and can be freely connected to other SPI devices.

2.4.3a ATmega — Standard Pin-out - ISP connections

| PROG_VCC :
PROG_RESET Reset
- Circuit
RESET Vcce
PROG_MOS]I s Atmel
" ATmega
PROG_SCK scK | ~ AVR
o Microcontroller
R (UART
PROG_MISO ™0 | pin-out)
Vss
| PROG_GND I

Fig 2.4.3b — ATmega AVR — Standard Pin-out - SPI Signal nhames and directions

Programmer Signal description Signal Connect to Signal direction
Signal Name direction AVR (from
(from Microcontroller | Microcontroller)
Programmer) | Pin
PROG_MOSI Master OUT, Slave In Output RXD* Input
PROG_MISO Master IN, Slave OUT | Input TXD* Output
PROG_SCK Serial Clock Output SCK Input
PROG RESET RESET Output RESET Input

* Please note — The TXD and RXD pins must be used for ISP instead of the MISO and MOSI pins.

Special Considerations
1. The TXD and RXD pins must be used for ISP instead of the MISO and MOSI pins.

2. For the ATmegal03(L) device only, the ATmegal03 MISO pin (pin 13) is active during In-System
Programming even though this pin is not actually used for programming. If this pin is used as an
output, make sure that whatever it is connected to can cope with the pin toggling during ISP. It may
also be necessary to insert a current limiting resistor in this line.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 13
Version: V1.17 — 11" Feb 09

TECHNOLODIES

The Imbedded Solutions Company.

Application Note

2.5 ISP Header Selection Chart (by header)

The FOUR ISP Headers featured on the most Equinox ISP Programmers are detailed in the table
below. The Atmel 6-way (1) and Atmel 10-way header (3) connectors are also found on the Atmel
STK500 Target Board. The Atmel JTAG connector (4) is found on all Equinox ISP programmers

except for the FS2000A and the same connector is used on the Atmel JTAG ICE and many Atmel

Target Boards which feature a JTAG programming interface.

|ISP Description / Function ISP Header Pin-out
Header
1 |J3 Atmel 6-way ISP Header

PROG MISO —
PROG_SCK
PROG_RESET

iy

B

>—
-
-

ﬁ

PROG_VCC

=N

PROG_MOSI

(=3}

PROG_GND

Header J6 can have THREE different pin-outs depending on which Target Device is to be

programmed. See (2a), (2b) and (2c).

2a |J6(a) Equinox 10-way Header(a) | rogvec —f— o2 l PROG.SPARE
| [mostsaa |21 o moos |
Device support | [we ofe oo mocmso |
Atmel AT90S, ATmega, ATtiny, AT89S 7 8
e e o5 mossan |
21— o412 [proG ResET/VPP
2b [J6(b) Equinox 10-way Header(a) | rogvec —f— o2 l PROG.SPARE
| [mostsaa |21 o mocsol |
Device su.pport. R 5 3_. ._
Atmel ATtiny11/12/15 7 8
. . S
High Voltage (+12V Vpp) Programming 9 10
—e o—1—{PROG_RESET/VPP
Mode
2c |J6(c) Equinox 10-way Header(b) | mocvee e «J2 "
3 4
, PROG_PSEN PROG_TXD
Device support: _. . 6
Atmel Wireless T89C51Rx2 N/ , 3’] ;
Philips PS9C51RX2 / 66x | PROG GND |—"f—e o—
[Proc.o0 -24—e o9 prOG ReSET
3 |J7 Atmel 10-way Header | 1 2

Device support:
Atmel AT90S, ATmega, ATtiny, AT89S
devices

PROG_MOSI
PROG_LED

PROG_RESET
PROG_SCK |~

;

PROG_MISO

LisT

1111t

i

i

PROG_VCC

4 " PROG_GND

6

PROG_GND
8

PROG_GND
0

PROG_GND

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 14
Version: V1.17 — 11" Feb 09

TECHNOLODIES

The Imbedded Solutions Company.

Application Note

Atmel 10-way JTAG Header

Device support:
Atmel ATmega32/128 + any new devices
with JTAG port

PROG_TCK
PROG_TDO

PROG_TMS

PROG VCC
[rrocTOI -

LisT

1111t

j‘

2

i

PROG_GND
PROG_VCC

i

=)}

PROG_RESET

lo.¢]

N/C
PROG_GND

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family
Version: V1.17 — 11" Feb 09

15

%ﬂlm Application Note

The Imbedded Solutions Company.

3.0 Creating an SPI Programming Project

3.1 Overview

This section describes how to create a ‘Programming Project’ for an Atmel AVR microcontroller
using ‘SPI — Serial Programming Algorithm’. If you have used the Atmel ‘AVR Studio’ software to
develop the firmware for your application, it may then be necessary to convert the ‘Fuses’ and ‘Lock
Bits’ to the correct format for inclusion in your EQTools project — please see section 5 for further
details.

3.2 Information required to create an SPI Project

The following information about the Target System is required in order to create an AVR SPI
Programming Project:

| Information / data required Example
1 | AVR Device part number ATmega2561
2 | SPI connections / connector on Target board Atmel 10-way IDC connector
3 | SPI Programming configuration i. Single AVR device
or
ii. Multiple AVR devices with a different
RESET or Chip Select for each device
4 | Target device oscillator speed Many AVR devices run from an INTERNAL
(before programming) e.g. 1MHz oscillator when you first receive
the chip from Atmel. This means that the
programmer SPI speed is limited to a
maximum of approx. 250 kHz.
5 | Target device oscillator frequency The programmer can instruct the Target
(final frequency during / after programming) AVR device to run from a different faster
oscillator during programming. This is
usually a faster external oscillator.
e.g. 12 MHz crystal
6 | Target System Vcc voltage e.g. 3.3V
7 | Target System maximum current consumption | e.g. 100mA
8 | FLASH area ‘Program File’ Binary (*.bin) or Intel Hex (*.hex)
9 | EEPROM area ‘Data File’ Binary (*.bin) or Intel Hex (*.hex)
10 | Configuration Fuse values i. Boolean fuse values:
These fuse values describe how the e.g. SPIEN=0, CKSEL=1, CKSEL2=0 etc
‘Configuration Fuses’ in the AVR device are to | ii. Fuse Hex values from ‘AVR Studio’
be programmed. e.g. 0x22 0x45 0x34
11 | Reset circuit parameters e Capacitor / Resistor circuit
e Watchdog supervisor circuit
e Voltage monitoring circuit

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 16
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.3 Creating an EDS (Development project)

The simplest way to create a Programming Project for an SPI device is to use the EDS (Development
Mode) Wizard as follows:

3.3.1 Launching EDS and selecting a Target Device

e Launch EQTools

e Select <Create a new Development (EDS) Project> - the EDS (Development) Wizard will
launch

e Click <Next> - the <Select Target Device> screen will be displayed.

Select Target Device... E

Search for Device Micro Details | Notes
ATMEGATERV-10 ~ t anufacturer:
Atmnel
%% ATmegalb ”~ m.e
% ATmegalbl Farnily:
*« ATmegal B1L AThega (SFI)
2 ATmegalB2-16 Drevice Code:
Mg ATmegalB2L-A Y
& ATregal 62-3 ATmegalBE-10
*{ ATmegal 63 Flash Size:
*« ATmegalB3L 16384 [0:4000)
% ATmegal64P-20 EEPROM Size:
bod ATmegal B4PY-10 512 (0x200]
& 14 Tmegal 6EV-10 -
% ATmegal 6316 Signature:
*« ATmegalB9L-8 0x1E9408
% ATmegalBIP-16 Versior;
% ATmegal BIPV-0 i
% ATmegal 631
A ATmenalFl s
Library: ATmega.LIB Description: ATmega{AVR) Library (SPI/ITAG) Version: 1.53R
Ok] [Cancel

e Type the required device into the ‘Search for Device’ field - a list of matching devices are
displayed in the box below.

e Select the required device from the list and then click <OK> - the device is now selected.

e On the next screen, check that the device selection and all other device parameters are
correct

e Click <Next> to advance to the next screen

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 17
Version: V1.17 — 11" Feb 09

Application Note

3.3.2 Target Oscillator Settings

This screen allows you to set up the ‘Target Oscillator frequency’.
The ‘Target Oscillator Frequency’ is the frequency which the Target Device is being clocked at
during the In-System Programming (ISP) Process.

B Fquinox Development Suite(EDS) Wizard... - Untitled

Target Chip Oscillator Settings
Select the Oscillator Type [Internal or External] and Freguency of the T arget Chip
) External Dscillator (%) Internal RC Dscillator Programmer OP4 Clock
Internal Dzcillator Frequency [0P4 Clock Frequency
1.000000 MHz v 1.8432 MHz w
Oszcillator Frequency: [wirite Calibration Byte to: To enable OP4 Clock, select
hir 'SCKZ_IN' followed by 'SCKZ2_EMN'
0.0 Hz in Pre-Program State Machine
hax
8.0Hz
Set Diefault
Hates:
[< Back ” Mext >] [Close]

e Many Atmel AVR devices feature both an INTERNAL on-chip oscillator and also the ability to
run from an EXTERNAL crystal or Ceramic Resonator.

e When a virgin device from Atmel is programmed for the first time, it will usually be running
from an INTERNAL Oscillator. The frequency of the oscillator is usually set at the factory to be
approximately 1MHz. At this frequency both SPI In-System Programming (ISP) and JTAG will
operate but SPI ISP will be very slow.

e In SPI programming mode, the Target AVR device must be clocked by a stable oscillator
during programming. e.g. Internal Oscillator, external crystal or ceramic resonator.

Instructions:

e If the Target Device is running from an INTERNAL oscillator e.g. 1MHz internal, select
‘Internal Oscillator’ and select the internal oscillator frequency from the drop-down list.

e If the Target Device is going to be running from an EXTERNAL oscillator e.g. crystal or
ceramic resonator once the CKSEL Fuse bits have been programmed, select ‘External
Oscillator’ and enter the oscillator frequency. This should be written on the oscillator
component itself or on the circuit schematic.

e The ‘Programmer OP4 Clock’ can be used to clock a device which has no oscillator.

Please note:
The Target Oscillator speed is not technically required for SPI programming. It simply allows the GUI
to work out what the maximum allowed SPI speed should be for the Target Device.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 18
Version: V1.17 — 11" Feb 09

Application Note

3.3.3 Target System — Power Supply Settings

This screen allows you to set up the Power Supply characteristics of your Target System.

Target System Power Supply Settings

Select Target System Yoltage and Current Consumption H

Target Yoltage Settings Programmer Controlled Power Supply
Yoltage Prograrimer controlled Target Power Supply: OM
5.0 -3 J Maxirmurn Current (ma) Powerdown Time ()
Tolerance [mv] 200 il a0 il
500 il Current Settle Tirme (ms] PSU Out QK Delay [ms)
Statilise Time (s 100 -3 500 -3
20034 Yoltage Settle Time [ms)

1003
Power Status at end of project:

Fower Supply iz switched OFF at end of project W

i. Select the Target Voltage

e This should be the voltage at which the Target System is being powered during the
programming operation.

e Set the ‘Voltage Tolerance’ to be as wide as possible e.g. 500mV to allow for power supply
variations. If the programmer is powering the Target System, this will also give a faster power-
up time.

¢ It may be possible to power just the Target Microcontroller rather than the entire Target
System.

ii. Set up the Target Powering and current parameters
e This option is only available for the PPM3-MK2 / PPM4-MK1 programmers.
o If the programmer is to power the Target System,
select <Programmer controlled Target Power Supply: ON>
e Set the ‘Maximum Current’ to the maximum possible current which the Target System could
draw from the programmer.
e Leave all other settings as default.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 19
Version: V1.17 — 11" Feb 09

Application Note

3.3.4 Specifying the FLASH (Code) File

This screen allows you to specify the Code (firmware) file which is to be programmed into the FLASH
area of the Target Device. This is an optional step — you can also specify the file once you are in the
Development Suite (EDS).

¥ Fquinox Development Suite(EDS) Wizard... - Untitled

FLASH Area Programming Options H

Select the required pragramming options far the FLASH memary area

[C]Blark Check Flazh

Operation: () None (8) Programerifty (O Werify Only
Flash File | Timings

Flash File: |C:temp\SPI TestingWFLASH. hax

Shabus Loaded OK Tupe: Intel Hex (Generic)
Min Add, (%0000 Max Aidd, 0<3FFF Bytes: 16384 [0x4000) CRC |0x620%

Buffer: Dizcard leading 0sFF Dizcard trailing 0«FF
Warite: () Auto Flange () Custom: Wit Fram| 0x0000 To |Ox3FFF Bytes: [16384

i. Blank Check the FLASH

e If the chip has been erased at the start of the programming cycle, then the FLASH should
already be blank (i.e. all locations contain the value OxFF).

e If you want to be absolutely sure the FLASH is blank, you can enable the ‘Blank Check Flash’
option. This will perform a full Blank Check of the FLASH area to check that all locations are
set to OxFF.

e Warning — this check can be time-consuming and will increase the overall programming time!

ii. Selecting the FLASH File
e Click the <Browse> button
e Browse to and select the file you wish to load and then select <OK>
e If the input file is a BINARY file then the wizard will load the data in from file starting at address
0x0000 and continuing contiguously to the end of the file.
e If the input file is an INTEL HEX file then the wizard will load in from file from the start address
specified in the file to end address specified in the file.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 20
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.3.5 Specifying the EEPROM (Data) File

This screen allows you to specify the EEPROM (data) file which is to be programmed into the
EEPROM area of the Target Device. This is an optional step — you can also specify the file once you
are in the Development Suite (EDS).

Equinox Development Suite(EDS) Wizard... - Untitled

Select the required programming options for the EEPROM memory area

EEPROM Area Programming Options H

[Blank Check Eeprom

Operation: (O Mone (%) Programeerify () Yerify Only
Eeprom File | Timings

Eeprom File: C:MtemphS Pl Testing\EE. hex

Status: w/arming: File iz too large for device Type: |ntel Hex [Generic)
Minadd, 0x0000 hax Add. O=01FF Bytes: 512 [0x200) CRC: |[Ox&496E

Buffer: Dizcard leading OxFF Dizcard tralling OxFF
Ww/rite: () Auto Range) Custom: Write From| 0+0000 | To |0=01FF Bytes: | 512

i. Blank Check the EEPROM

o If the chip has been erased at the start of the programming cycle, then the EEPROM should
already be blank (i.e. all locations contain the value OxFF).

e However, if the Target Device has an ‘EESAVE’ fuse and this fuse is ENABLED (EESAVE=0),
then the EEPROM will not be erased during the Chip Erase operation.

e If you want to be absolutely sure the EEPROM is blank, you can enable the ‘Blank Check
EEPROM’ option. This will perform a full Blank Check of the EEPROM area to check that all
locations are set to OxFF.

e Warning — this check can be time-consuming and will increase the overall programming time!

ii. Selecting the EEPROM File

e Click the <Browse> button

e Browse to and select the file you wish to load and then select <OK>

o If the input file is a BINARY file then the wizard will load the data in from file starting at address
0x0000 and continuing contiguously to the end of the file.

e If the input file is an INTEL HEX file then the wizard will load in from file from the start address
specified in the file to end address specified in the file.

¢ Inthe example above, the EEPROM file contains more data than the physical EEPROM size
of the Target Chip. The input data will therefore only read the data in to the address range of
the EEPROM.

e In SPI Mode, the granularity of the EEPROM Memory can be 1, 4 or 8 bytes. This is known as
the ‘EEPROM Page Size’. This means that the programmer will always program in pages of 1,
4 or 8 bytes. Your input file will therefore be rounded up to the nearest block of 1, 4 or 8 bytes.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 21
Version: V1.17 — 11" Feb 09

o . Application Note

The Imbedded Solutions Company.

3.3.6 Launching EDS at the end of the EDS Wizard

Once you reach the end of the EDS Wizard, click the <Test> button to launch the project in the
Equinox Development Suite (EDS).

® Fquinox Development Suite(EDS) Wizard... - Untitled
Congratulations!

“ou hawve now created a Dewvelopment (EDS) project.

To testthis projectin Development Mode:

- Click the <Test» button below

- Sawe your project with a suitable name eg. myprojectppm

-'our prajectwill launch in the Equinox Development Suite (EDS).
-Y'0u £an naw interactively program the Target Chip under FC cantral,

Please note:

“our project will be saved inthe EQToaols installation directory by default.
Flease select an alternative directory to save your projects when you sawve
the ED'S project.

To prograrm:

-FLASH area of the Target Chip, selectthe <FLASH? tab.
-EEPROM area of the Target Chip, selectthe <EEPROM> tab.
- Configuration Fuses of the Target Chip. select the <Fuses» tab
- Security Fuses of the Target Chip, selectthe <Security> tab

Enter a name for the EDS project e.g. ATmegal68 and click <Save>
-> your project will now launch in EDS Mode.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 22
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.4 Testing an SPI Project in Development (EDS) Mode

If you have clicked the <Test> button at the end of the EDS Wizard, then an EDS (Development
Mode) session will now launch.

quinox Development Suite (EDS)... - C:\temp\SPI Testing\ATmega168.EDS

Programmer and Device | Target Oscillator | SPI Settings | Target Power Supply | Flazh | Eeprom || Fuses | Security

Fraject Information:

& Open / Modify Base Programming Froject | Qm!

‘;ﬁ Add Project file to a new Project Collection |

E%L} Update this project in an existing Project Collection |

C:stemphSPI Testingt&T megal B3.PP

Froject Mame: Author:
Project Yersion: LCreation Date
1.0.0.0 14,/11/2007 w

Pleasze note: To upload this project to a programmer. please either add the project to
an existing Project Collection or create a new Project Collection.

Iain Settings:
Option: Walue
Target Device ATmegalBEY-10
Fragramming Interface L SPI 3-wire + RESET
Target Woltage B+~ 500
Programmer Powers Target Mo
Pre-Programming State Machine 1 -Active L0 RESET - RESET Diriven HIGH [50msz] and ...
Flash file C:tempsSPI TestingyFLASH. hex
Eepror file C:tempsSPI Testing EE . hex
SPI Settings:
Hardware SPI:

The following default settings will be used:

e ‘Hardware SPI' is selected by default for all AVR microcontrollers using ‘Low-voltage Serial
Programming Mode’. This is usually much faster than ‘Software SPI'.

e ‘Software SPI' is selected by default for all ATtiny AVR microcontrollers when using the ‘High-
voltage Serial Programming Mode’. This is because this algorithm does not use true SPI.

e The 'SLOW SPI' speed is used for all operations except for programming the FLASH and
EEPROM blocks

e The ‘FAST SPI’ speed is used for programming the FLASH and EEPROM blocks only.

e Target System not powered by programmer (unless enabled during the EDS Wizard)

e The default ‘'SPl pre-programming state machine’ will be used.

e The ‘Configuration Fuse Write’ operation is disabled (can be enabled in EDS)

e The ‘Security Fuse Write’ operation is disabled (can be enabled in EDS)

At this stage there are still a few parameters which may need to be set up / checked before the
programmer will communicate with the Target Device on the Target Board.

Please follow the instructions in the next sections which explain how to set up the:
e SPIl Mode
e SPI Frequency

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 23
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.5 SPI Programming Mode
3.5.1 Overview

It is possible to program most Atmel AVR devices using either ‘Software SPI’ or ‘Hardware SPI’
mode. The fastest ‘SPI Mode’ for programming purposes is ‘Hardware SPI' and so this mode is
automatically selected for all Atmel AVR devices with the exception of the ATtiny family when
programming in ‘High-voltage Serial Programming Mode’. The ‘Software SPI’ mode should only be
used if you need to program at very slow SPI frequencies (<100kHz) or the SPI clock timing requires
manual adjustment to compensate for an inductive or capacitive load on the SPI pins.

The table below details the available ‘SPI Modes’ for each Device Family:

| Device family Software Hardware SPI
SPI
1 | AT89S Yes Yes (default)
2 | AT90S Yes Yes (default)
3 | AT90CAN Yes Yes (default)
4 | AT90USB Yes Yes (default)
5 | AT9OPWM Yes Yes (default)
6 | ATtiny (LV SPI algorithm) Yes Yes (default)
7 | ATtiny (HV SPI algorithm) Yes Not supported
8 | Atmega Yes Yes (default)
8 | Atmega ‘P’ PICO Yes Yes (default)

The ‘default’ setting is ‘Hardware SPI’ for all devices except for the ATtiny devices in ‘High-voltage
Serial Programming Mode’.

3.5.2 Hardware SPI Mode

When ‘Hardware SPI' mode is selected, the programmer will use a ‘Hardware SPI Port’ to generate
the SPI waveforms which are used to program the Target Device. This has the advantage that the
SPI Clock waveform has a 50:50 mark:space ratio and so is much more reliable when programming
many Atmel AVR microcontrollers. It can also run at much higher frequencies than ‘Software SPI'.
The disadvantages of the ‘Hardware SPI’ are that only a few designated frequencies are available
and also that the lowest frequency is 115.2kHz for the PPM3/4 and FS2003/9 and 57.6 kHz for the
Epsilon5 programmer.

3.5.3 Software SPI Mode

When ‘Software SPI’ mode is selected, the programmer will use bit-toggling software algorithms to
generate the SPI waveforms which are used to program the Target Device. This results in the SPI
waveforms having an uneven mark:space ratio which can lead to unreliable programming of some
AVR microcontrollers. The advantages of ‘Software SPI’ are that very low SPI speeds can be
supported and the timings of the SPI waveform can be adjusted to suit inductive or capacitive loads.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 24
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.6 Using ‘Hardware SPI' Mode
3.6.1 Overview

To select ‘Hardware SPI’ mode, click the <SPI Settings> tab and then click the ‘Hardware SPI’ radio
button.

“ Equinox Development Suite (EDS)... - C:\temp\SPI Testing\ATmega168.EDS

Owerview | Programmer and Device | Tanget Oscilator | 5P Setings | Target Power Supply | Flash | Esprom | Fuses | Security

Target Oscillator Freq: |1.00 MHz Target Max SP| Freq: | 166.67 kHz

() Software SPI () Hardware SPI

Fast SPl Frequency:

Slow SPI Frequency 115.2KHz ~

[Set Fastest] [Set Default l

There are two different SPI frequency settings — SLOW and FAST — which are used during different
parts of the programming algorithm.

SLOW SPI Frequency

e The ‘Slow SPI Frequency’ is used for all programming operations except for programming the
FLASH and EEPROM memories.

e This frequency should be left at the lowest selectable value. This means that the programmer
should always be able to communicate with an AVR microcontroller, even if the micro is
running from a slow internal oscillator.

e The lowest selectable SPI frequencies are 115.2kHz for the PPM3/4 and FS2003/9 and 57.6
kHz for the Epsilon5 programmer.

FAST SPI Frequency
e The ‘Fast SPI' speed is used for programming the FLASH and EEPROM blocks only. It
should be set to the fastest frequency supported by the Target Device.
e For AVR devices, the maximum SPI frequency must be at least ¥4 of the frequency that the
Target AVR Microcontroller is running at.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 25
Version: V1.17 — 11" Feb 09

Application Note

TECHNOLODIES

The Imbedded Solutions Company.

3.6.2 Optimum SPI Frequencies for each programmer

The tables below show the optimum ‘FAST SPI’ frequency settings for the Epsilon5, FS2003,
FS2009, PPM3-MK2 and PPM4-MK1 programmers. The ‘Target AVR Oscillator Frequency’ is the
frequency of the oscillator which the AVR device is running from during the programming procedure.

i. For the Epsilon5 programmer:

| Target AVR Oscillator Slow Maximum | Suggested
Frequency SPI possible | FAST SPI
frequency SPI frequency
range frequency
1 |1MHz 50 - 150 kHz | <250 kHz | 115.2 kHz
2 |4 MHz 50 - 150 kHz | < 1MHz 921.6 kHz
3 | 8MHz 50-150kHz | <2 MHz 921.6 kHz
4 | 16 MHz 50-150kHz | <8 MHz 921.6 kHz

ii. For the FS2003, FS2009 and PPM3-MK2 and PPM4-MK1 programmers (fitted with the

standard EQ-SFM I/O Driver Module):

| Target AVR Oscillator Slow Maximum | Suggested
Frequency SPI possible | FAST SPI
frequency SPI frequency
range frequency
1 |1MHz 50 - 150 kHz | <250 kHz | 115.2 kHz
2 | 4MHz 50- 150 kHz | <1MHz 921.6 kHz
3 | 8MHz 50 - 150 kHz | <2 MHz 921.6 kHz
4 |16 MHz 50 - 150 kHz | <8 MHz 921.6 kHz

iii. For the PPM3-MK2 or PPM4-MK1 programmers fitted with the EQ-SFM-MAX-V1.2 or V1.3
High-speed 1/O Driver Module:

| Target AVR Oscillator Slow Maximum | Suggested
Frequency SPI possible | FAST SPI
frequency SPI frequency
range frequency
1 |1MHz 50 - 150 kHz | <250 kHz | 115.2 kHz
2 |4 MHz 50-150kHz | <1MHz 921.6 kHz
3 | 8MHz 50-150kHz | <2 MHz 1.8432 MHz
4 |16 MHz 50 - 150 kHz | <8 MHz 3.6864 MHz

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family

Version: V1.17 — 11" Feb 09

Application Note

3.7 Using ‘Software SPI' mode

To select ‘Software SPI’ mode, click the <SPI Settings> tab and then click the ‘Software SPI' radio
button.

Equinox Development Suite (EDS)... - C:\temp\SPI Testing\ATmega168.EDS

Owerview | Programmer and Device | Target Ozcillstor | SPI Settings | Target Power Supply | Flash | Eeprom | Fuses | Securiy

Target Oscillator Freq: |1.00 MHz Target Max 5F Freq: | 16E.E7 kHz

(%) Software 5P1 () Hardware 5PI

Medium SPI Frequancy. | 165.67 kHz 200 -3 200-4] [49020kH2
Data Delay [us] Clock Delay [us] Maximum ¥ alue
Slow 5P| Frequency | 49.98 kHz 667 -3 667 -3 [49020kHz

There are two different SPI frequency settings — SLOW and MEDIUM — which are used during
different parts of the programming algorithm.

SLOW SPI Frequency
e The 'Slow SPI Frequency’ is used for all programming operations except for programming the
FLASH and EEPROM memories.
e This frequency should be left at a low value e.g. 50 — 100 kHz. This means that the
programmer should always be able to communicate with an AVR microcontroller, even if the
micro is running from a slow internal oscillator.

MEDIUM SPI Frequency
e The ‘Medium SPI’ speed is used for programming the FLASH and EEPROM blocks only. It
should be set to the fastest frequency supported by the Target Device.

e For AVR devices, the maximum SPI frequency must be at least ¥4 of the frequency that the
Target AVR Microcontroller is running at.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 27
Version: V1.17 — 11" Feb 09

%Hiﬂ_e.!‘, Application Note

The Imbedded Solutions Company.

3.8 Choosing the fastest possible SPI frequency
3.8.1 Overview

The programming time of an Atmel AVR microcontroller can be dramatically reduced by using the
fastest possible SPI frequency for programming the FLASH and EEPROM areas of the chip. As a
general rule of thumb, the fastest possible SPI frequency must be less than % of the Target
Microcontroller Oscillator Frequency.

The table below shows the typical frequency ranges for both the ‘SLOW SPI’ and ‘MEDIUM / FAST’
SPI settings for a given Target Oscillator frequency.

| Target AVR Oscillator Slow MEDIUM
Frequency SPI or FAST
frequency SPI
range frequency
range
1 |1MHz 50 - 150 kHz | <250 kHz
2 |4 MHz 50-150kHz | <1MHz
3 | 8MHz 50-150kHz | <2 MHz
4 | 16 MHz 50-150kHz | <8 MHz
Example:

If the microcontroller is running from e.g. an internal 1LMHz oscillator, then the maximum SPI
frequency is approximately 250kHz. It would be prudent to use 200kHz to be on the safe side as the
internal oscillators of AVR devices are not calibrated and so can be running at a much lower
frequency than the nominal value quoted in the datasheet.

3.8.2 Programming the CKSEL Fuses to select a faster Oscillator
Frequency

When you first program a virgin AVR microcontroller which has an Internal Oscillator, then the device
will have been set up by Atmel to run from the Internal Oscillator at e.g. 1MHz. This means the
maximum SPI frequency is limited to < 250 kHz which would lead to very slow programming of the
FLASH and EEPROM areas. To speed up the programming cycle of the AVR device, it is necessary
to set the clock source of the AVR to use either a faster Internal Oscillator or to use a faster External
Oscillator. This can be achieved by programming the ‘CKSEL — Clock Selection Fuses’ to select the
faster oscillator BEFORE programming the FLASH and EEPROM areas.

To achieve the fastest programming time in EDS (Development Mode):

e Select the EDS — Fuses tab (this will default to Post-erase Fuses)

e Enable the ‘Fuse Write’ operation

o If you are only using the AVR Internal Oscillator, set the CKSEL fuses to the fastest Internal
Oscillator setting e.g. 8MHz

e If you are only using the AVR External Oscillator, set the CKSEL fuses to the fastest External
Oscillator setting e.g. 8MHz. This should be the frequency of your external oscillator signal,
crystal or ceramic resonator

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 28
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

e Setthe ‘Fuse Action’ field to be ‘Program - RESET - Verify'. This will program the fuses
and then perform a reset cycle of the AVR device forcing it to run from the new oscillator
settings.

e Click the <Write> button to program these fuse values into the AVR device.

-> the AVR microcontroller should now start to run from the faster Internal or External
oscillator.

e If you now try to program some data into the FLASH or EEPROM area, it should program OK
at the SPI Frequency you have selected.

e If the programming fails then it is probable that the chip is still running from a slower oscillator
e.g. IMHz. Check the fuse settings are correct and then try to program the FLASH / EEPROM
again. If it still fails, try reducing the MEDIUM / FAST SPI Frequency in steps of eg. 100 kHz
until the programming operation passes.

3.8.3 Creating a Standalone Project which programs the fuses before
programming the FLASH / EEPROM

To achieve the fastest possible programming times, it is necessary to program the CKSEL Clock
Selection Fuses to select the fastest possible AVR oscillator BEFORE the FLASH and EEPROM
areas are programmed. If you follow the instructions in section 3.8.2 to create an EDS project and
then open the ‘Base Project’ from the EDS — Overview tab, the Fuse Settings will have been placed
in the <Post Erase Fuses> tab. If you now compile this project and upload it to the programmer, the
fuses will be written immediately after the Erase operation and then the chip will reset forcing it to run
from the new oscillator settings.

Here is a how atypical Standalone Programming project will program an AVR device:
o Start
e AVR s running from e.g. Internal 1MHz oscillator
e Programmer uses SLOW SPI speed of e.g. 50kHz
e Enter programming mode
e Chip Erase
e Program CKSEL Fuses - selects e.g. the internal 8 MHz oscillator
¢ Reset cycle the chip > AVR starts to run from the internal 8 MHz oscillator
e Programmer uses FAST SPI speed of e.g. 1.8432 MHz to program FLASH and EEPROM
e Program FLASH area @ SPI frequency = 1.8432 MHz
e Program EEPROM area @ SPI frequency = 1.8432 MHz
e Program Security Fuses @ SPI frequency = 50kHz
e End

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 29
Version: V1.17 — 11" Feb 09

%ﬂmox Application Note

The Imbedded Solutions Company.

3.9 Testing SPI communication with the Target Chip
To make sure that the programmer can communicate to the Target SPI device, try reading back the
Device Signature as follows:
e Select the <FLASH> tab
e Locate the <Check Sig> button on the right-hand side of the screen and click it.
- The programmer will now try to communicate with the Target Chip via the SPI Interface
-> If the Target Chip responds correctly, then EDS will report ‘Signature Read: Pass’.

Information

Result: PASS

\p Operation: Signature Check
Signature Read = O0x1E9302

-> If the Target Chip does not respond, then EDS will report either:

i. Cannot enter programming mode
If you receive this error, please check the following:
e The SPI connections between the programmer and the Target System are correct.
e There is definitely power applied to the Target System and to all the SPI devices.
e The 'SPI Frequency’ settings are correct for the Target Device being programmed.
e If your project is using ‘Software SPI’, try slowing down the ‘SLOW SPI Frequency’ and then
try to check the Device Signature again.
e If your project is using ‘Hardware SPI’, try slowing down the ‘SLOW SPI Frequency’ and
then try to check the Device Signature again.
e Check that the ‘Reset State machine’ is providing a suitable reset signal to force the Target
Device into programming mode.

ii. ‘Signature Read: Fail'.

Operation: Signature Check
Result: FAIL

Error; Incorrect Signature - Read: Ox000000, Expected: 0x 1ES802
Error 3044 - Failed to Enter Programming Mode, tried 3 times!

If you receive this error, please check the following:

e Make sure there are no series resistors in-line with any of the SPI signal lines

e Make sure there are no capacitors on any of the SPI signal lines

e Make sure the total length of the SPI ISP cabling is no more than 200 cm

e Try slowing down the ‘SLOW SPI Frequency’ and then try to check the Device Signature
again.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 30
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.10 Programming the FLASH Area

These instructions describe how to program the contents of a file into the FLASH area of the Target
Device.

Please note:
e If you are using ‘Software SPI’, then the ‘"MEDIUM’ SPI speed is used for writing the FLASH
area.
e If you are using ‘Hardware SPI’, then the ‘FAST' SPI speed is used for writing the FLASH
area.

e For AVR devices, the maximum value of the SPI| Frequency must be < V¥4 of the AVR
oscillator frequency.

To program the FLASH area:
e Selectthe <FLASH> tab
e If you have not already selected a data file to program, click the ‘Edit buffer’ check box and
then click the <Load> button to select a suitable Binary of Intel Hex file.
e The contents of the specified file should now be displayed in the Buffer Window.
e Click the <Write> button

Write Block to Flash 3

Electronic Chip Erase
Use file start and end addreszes

Remove preceeding '0:FF'
Remaove traling '0xFF'

[o][cancel |

e EDS will automatically perform a Chip Erase by default which will erase the entire FLASH
before programming any data into it.

e Select the address range you wish to program.

e EDS will automatically use the ‘Start’ and ‘End’ address of the FLASH input file unless
otherwise specified. This reduces the total data actually programmed to the number of bytes in
the input file rounded to the end of the nearest FLASH Page.

e If you want to program the entire FLASH range, click the <Entire Device> button.

e Click <OK> to program the FLASH of the Target Chip.

e The programmer should now start to program the chip.

e The BUSY LED will illuminate on the programmer.

e The programmer will program the contents of the Buffer Window into the FLASH area of the
Target Device.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 31
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

Each block of data is programmed and then verified so if a failure occurs it will be notified
immediately.
To verify that the data has been programmed correctly, click the <Verify> button.

If EDS reports a ‘FLASH programming error’, please check the following:

Make sure the FLASH area is definitely erased before attempting to program it.

The 'SPI Frequency’ settings are correct for the Target Device being programmed.

The Target AVR Device may be running from a slow Internal Oscillator (e.g. @ 1MHz) so the
maximum SPI Frequency can only be approximately 250kHz. Try writing the AVR Clock
Selection Fuses (CKSEL xxx) to force the chip to run from a faster oscillator.

If your project is using ‘Software SPI’, try slowing down the ‘MEDIUM SPI Frequency’ and
then try to program the FLASH again.

If your project is using ‘Hardware SPI’, try slowing down the ‘FAST SPI Frequency’ and then
try to program the FLASH again.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 32
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.11 Programming the EEPROM Area

These instructions describe how to program the contents of a file into the EEPROM area of the Target
Device:

Please note:
e If you are using ‘Software SPI’, then the ‘MEDIUM’ SPI speed is used for writing the
EEPROM area.
e If you are using ‘Hardware SPI’, then the ‘FAST’ SPI speed is used for writing the EEPROM
area.
e For AVR devices, the maximum value of the SPI Frequency must be < ¥4 of the AVR
oscillator freguency.

To program the EEPROM area:
e Select the <EEPROM> tab
e If you have not already selected a data file to program, click the ‘Edit buffer’ check box and
then click the <Load> button to select a suitable Binary of Intel Hex file.
e The contents of the specified file should now be displayed in the Buffer Window.
e Click the <Write> button

Write Block to EEPROM

!

Usze file start and end addreszes
Remove preceeding '0xFF'
Remove trailing ‘0xFF'
[Ok] [Cancel]

e Select the address range you wish to program

e EDS will automatically use the ‘Start’ and ‘End’ address of the FLASH input file unless
otherwise specified. This reduces the total data actually programmed to the number of bytes in
the input file rounded to the end of the nearest EEPROM Page.

e If you want to program the entire EEPROM range, click the <Entire Device> button.

e Click <OK> to program the EEPROM of the Target Chip.

e The programmer should now start to program the chip.

e The BUSY LED will illuminate on the programmer.

e The programmer will program the contents of the Buffer Window into the EEPROM area of the
Target Device.

e The EEPROM data is programmed in pages of either 1, 4 or 8 bytes and then verified so if a
failure occurs it will be notified immediately.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 33
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

If EDS reports an ‘EEPROM programming error’, please check the following:

e The 'SPI Frequency’ settings are correct for the Target Device being programmed.

e The Target AVR Device may be running from a slow Internal Oscillator (e.g. @ 1MHz) so the
maximum SPI Frequency can only be approximately 250kHz. Try writing the AVR Clock
Selection Fuses (CKSEL xxx) to force the chip to run from a faster oscillator.

e If your project is using ‘Software SPI’, try slowing down the ‘MEDIUM SPI Frequency’ and
then try to program the FLASH again.

e If your project is using ‘Hardware SPI’, try slowing down the ‘FAST SPI Frequency’ and then
try to program the FLASH again.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 34
Version: V1.17 — 11" Feb 09

%Hiﬂ_e.!‘, Application Note

The Imbedded Solutions Company.

3.12 Erasing the FLASH / EEPROM area

It is possible to erase the FLASH and / or EEPROM area of a Target Device by clicking the <Erase>
button. This will also erase the Security Lock Bits changing all the Lock Bit values from ‘0’ to ‘1". The
Configuration Fuses are not affected by a Chip Erase operation.

3.12.1 Erasing the FLASH area

The only way to erase the FLASH area of the Target Device is to use the ‘Chip Erase’ command:

e Select the <FLASH> tab

e Click the <Erase> button

e This will send the ‘Chip Erase’ command to the Target Device.

e The Target Device will then erase the FLASH (and EEPROM as long as the EESAVE flag is
not set to 0)

e To confirm that the FLASH / EEPROM is definitely blank, you can choose to perform a Blank
Check operation.

3.12.2 Erasing the EEPROM area — special considerations

The only way to erase the EEPROM area of the Target Device is to use the ‘Chip Erase’ command:

e Select the <EEPROM> tab

e Click the <Erase> button

e This will send the ‘Chip Erase’ command to the Target Device.

e The Target Device will then erase the FLASH.

e The EEPROM area will only be erased if the EESAVE flag is set to ‘1'.

e To confirm that the FLASH / EEPROM is definitely blank, you can choose to perform a Blank
Check operation.

e Ifthe EEPROM is still not blank after the Erase Operation, check that the EESAVE fuse is
definitely set to ‘1’.

Important note:

In JTAG ISP mode, it is not possible for the programmer to write any bit of EEPROM from a ‘1’ to a
‘0’. This means that each EEPROM location must contain OxFF before it can be programmed to any
other value. This requires a Chip Erase operation to clear all locations to the value OxFF.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 35
Version: V1.17 — 11" Feb 09

€QUINOX

TECHNOLODIES

The Imbedded Solutions Company.

Application Note

3.13 Programming the Configuration Fuses
3.13.1 Overview

The Configuration Fuses of an Atmel AVR device can be programmed / read using the <Fuses> tab.

Instructions:
e Select the <Fuses> tab
e |Ifthisis a new EDS project, then the Fuses will be disabled.
e Check the ‘Program Post-Erase Fuse Bits’ box - the Fuses can now be programmed

Eeprom | Fuses

PC Fuzes:

Ovwerview | Programmer || Target Device | Target Oscillator | SPI Settings | Target Power Supply | Flash Security
Program Post-Eraze Fuse Bitz

Fuze Programming Action:

- Set Default
FrogramAerify -> RESET £

[1Read from Fuse file.

Enter Hex...

il

Impart...
Fuzes PC Fuze State Target Fuse State Dregcription Export...
€3 CKSELD 0 - PROGRAMMED Clock Select 0
€ CKSELT 1 - UNPROGRAMMED Clock Select 1 Target Fuzes:
€ CKSELZ 0 - PROGRAMMED Clock Select 2
€3 [KSEL3 0 - PROGRAMMED Clock Select 3 ¥ Bead
2 s5uTn 0 - PROGRAMMED Select Start Up Time 0 .
2 5071 1 - UNPROGRAMMED Select Start Up Time 1 m
cKaut 1 - UNPROGRAMMED Clock Output P Verly
2 Cro 0 - PROGRAMMED Divide Clock by 8 -
BODLEYELD 1 - UNPROGRAMMED Braven-out Detector Trigge... << Copy
BODLEYELT 1 - UNPROGRAMMED Brawvan-out Detector Trigge...
BODLEYELZ 1 - UNPROGRAMMED Brawvan-out Detector Trigge...
EESAWVE 1 - UNPROGRAMMED Preserve EEPROM during ...
WhDTOM 1 - UNPROGRAMMED “wiatchdog Timer Always 0.
W SPIEN Fiead Only 5Pl Programming EMABLE
DWwEN 1 - UNPROGRAMMED debugiwire Enable
€ R3TDISEL 1 - UNPROGRAMMED RESET pin - DISAELE
BOOTRST 1 - UNPROGRAMMED Select RESET Yectar
EOOTZ0 0 - PROGRAMMED Select Boot Size 0
BOOTZ1 0 - PROGRAMMED Select Boot Size 1

Local Fuse Y alues: 0«62, 0<0F 0«F3

Target Fuses : 77777

e The values of the Fuses which could be programmed into the Target Chip are shown in the
‘PC Fuse State’ column. The initial Fuse values are the default Fuse values for a virgin chip.

e The ‘Target Fuse State’ column displays the current value of the Fuses of the actual Target
Device. They are initially set to ‘?’ until the first read or write operation is performed.

e The Fuse Hex values are shown for the ‘PC Fuse State’ at the bottom of the screen.

e Ared ‘X’ nextto a fuse indicates a ‘Dangerous Fuse’. Programming one of these fuses
incorrectly could result in the chip no longer responding to the programmer.

3.13.2 Reading the Fuses from a Target Device

To read the Fuse Values from a Target Device:
e Click the <Read> button
e The Hex values of the ‘Fuse Bytes’ which are read back are displayed as follows:

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 36
Version: V1.17 — 11" Feb 09

€QUINOX

TECHNOLD

sies

The Imbedded Solutions Company.

& Cperation: FUSE Read
\]:) Result: PASS
Fuses Values Read: OxED, Ox98, O0xFD

e The Fuse values from the Target Device are now displayed in the ‘Target Fuse State’

column.

Application Note

Programferify

Fuses
CKSELD
CKSELT
CKSELZ
CKSELZ
suTO
5UT1
ckouT
CKDIvE
BOOTRST
BOOTSZ0
BOOTSZ
EESAVE
WDTON
SPIEN

€ JTAGEN
OCDEM
BODLEVELD
BODLEVELT
BODLEVELZ

Owerview | Programmer and Device
Program Post-Erase Fuse Bits

1 Read from Fuss file.

Fuze Programming Action:

PC Fuse State

_ e e o e e e e =

- PROGRAMMED
- UNPROGRAMMED
- PROGRAMMED
- PROGRAMMED
- PROGRAMMED
- UNPROGRAMMED
- UNFROGRAMMED
- PROGRAMMED
- UNPROGRAMMED
- PROGRAMMED
- PROGRAMMED
- UNPROGRAMMED
- UNFROGRAMMED
- PROGRAMMED
- PROGRAMMED
- UNPROGRAMMED
- UNPROGRAMMED
- UNPROGRAMMED
- UNPROGRAMMED

Fuze Values: 0x62,0293,0:07

Target Oscillatar | JTAG Settings

Target Fuze State

1 - UNPROGRAMMED
0 - PROGRAMMED

1 - UNPROGRAMMED
1 - UNPROGRAMMED
0 - PROGRAMMED

1 - UNPROGRAMMED
1 - UNPROGRAMMED
1 - UNPROGRAMMED
0 - PROGRAMMED
0-
1]
1
1
1]
1]
1
1
1]
1

PROGRAMMED

- PROGRAMMED
- UNPFROGRAMMED
- UNFROGRAMMED
- PROGRAMMED
- PROGRAMMED
- UNPROGRAMMED
- UNPROGRAMMED
- PROGRAMMED
- UNPROGRAMMED

Target Power Supply || Flash

Eeprom | Fuses

D ezcription

Clock. Select 0

Clock Select 1

Clock. Select 2

Clock Select 3

Select Ogcillatar Start Up Time 0

Select Oscillatar Start Up Time 1

Clock Output Enable

Divide Clock by 8

RESET Wector

Boot Size 0

Boot Size 1

Prezerve EEPROM during ERASE - ENABLE
Wwatchdog Timer always O

5Pl Programming EMABLE [O=EMABLED]
JTAG Programming EMABLE [0=EMABLED)
Or-Chip Debug (OCD) - EMABLE

Brawm-out Detectar Trigger Level 0
Browr-out Detector Trigger Lewvel 0
Browi-out Detectar Trigger Level 2

3.13.3 Verifying the Fuses of a Target Device

To verify the Fuse Values in a Target Device with the Fuse Values in the ‘PC Fuse State’ column:

e Click the <Verify> button

e Any differences in the Fuse Values between the PC settings and the Target Device setting will

now be displayed.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family

Version: V1.17 — 11" Feb 09

Security

PC Fuses:

Set Default
Edit Yalue...

Impart..

il

Export...
Target Fuses:
¥ Bead
¥ wiite

W Veity

i

<« Copy

%ﬂmox Application Note

The Imbedded Solutions Company.

3.13.4 Writing the Fuses into a Target Device

e To program the Fuses values in the ‘PC Fuse State’ column into the Target Device, click the
<Write> button
e If there are any ‘Dangerous Fuses’ in the list, then the following warning will be displayed:

Confirm

<P The Fuse "JTAGEN'is & dangerous fuss,
___CJ_/ Setting this fuse to the wrong value could make the device so it cannot be programmed again in ISP mode.,
Please double-check that the value of the fuse is correct before programming it.
To go ahead and skip all 'dangerous fuse’ messages and program the fuses, press the [ALL] button.

Are you sure you want to program this fuse?

e I WARNING !l If you choose to program e.g. the SPIEN (SPI Enable) Fuse to a ‘1’
(unprogrammed), then the chip will no longer respond to SPI ISP programming.

e Click <Yes> to allow programming of the selected Fuse

e Click <All> to skip all fuse warning messages and program all the fuses

e The programmer will now program all the fuses at the same time and then read them back and
verify them with the values in the ‘PC Fuse State’ column.

e The programmer will then report a PASS or FAIL for programming the Fuses.

— Operation: FUSE Write
\!}) Result: PASS
Fuse Bits have been programmed fverified QK
Fuses Values Read Back: Oxd2, 0x%3, OxFF

—

3.13.5 Using a ‘Fuse File’ to import Fuse settings into a project

It is possible to export the ‘Fuse Values’ for a particular device to a so-called ‘Fuse File’ so that a
single copy of the fuses is stored in one place. This ‘Fuse File’ can then be shared amongst many
projects if required. See section 4 for further details about using ‘Fuse Files’ .

3.13.6 Importing Fuse Settings in HEX format from AVR Studio

If the original firmware for your project has been developed using the Atmel ‘AVR Studio’ software,
then it is likely that the ‘Fuse Settings’ are defined as ‘Hex Fuse Bytes’. Please refer to Section 4 for
instructions on how to import these ‘Hex Fuse Bytes’ into your EQTools project.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 38
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.14 Programming the Security Fuses
3.14.1 Overview

The Security Fuses of an Atmel AVR device can be programmed / read using the
<Security Fuses> tab.

Instructions:
e Select the <Security Fuses> tab
e If thisis a new EDS project, then the Security Fuses will be disabled.
e Check the ‘Program Device Security Fuses’ box - the Security Fuses can now be
programmed

Ovarview | Programmer and Device | Target Oscillabor | JTAG Settings | Tangst Power Supply || Flash | Esprom | Fuses | Security

Program Device Security Fuses f Security Level PLC Fuzes:
Fuze Programming Action:
- Set Detault
Programverfy w
[] Read from Fuse file. EditValue. .
Irnpart. .
Fuses PC Fuze State Target Fuze State Dezcrption Export..
LBE1 1 - UNPROGRAMMED Laock Bit 1
LEZ 1-UNPROGRAMMED Lock Bit 2 Target Fuses:
BLEO 1 - UNPROGRAMMED Boot Lock Bit 01
BLED2 1 - UNPROGRAMMED Boot Lack Bit 02 ¥ Bead
BLE11 1 - UNPROGRAMMED Boot Lock Bit 11 » wit
BLE1Z 1 - UNPROGRAMMED Boot Lack Bit 12 el
-1' Werify

Eraze

i

<< Copy

Fuze ¥ alues: 000

e The values of the Security Fuse values which could be programmed into the Target Chip are
shown in the ‘PC Fuse State’ column. The initial Fuse values are the default Fuse values for
a virgin chip which usually represents an ‘unlocked’ chip.

e The ‘Target Fuse State’ column displays the current value of the Fuses of the actual Target
Device. They are initially set to ‘?’ until the first read or write operation is performed.

e The ‘Fuse Hex values’ are shown for the ‘PC Fuse State’ at the bottom of the screen.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 39
Version: V1.17 — 11" Feb 09

Application Note

3.14.2 Reading the Security Fuses from a Target Device

To read the Security Fuse Values from a Target Device:
e Click the <Read> button
e The Hex values of the ‘Fuse Bytes’ which are read back are displayed as follows:

Information

& Operation: SECURITY Read
1 Result: PASS
Security Fuse Values Read: 0xFF

e The Security Fuse values from the Target Device are now displayed in the ‘Target Fuse State’

column.
Owerview | Programmer and Device | Target Oscillatar | JTAG Settings | Target Power Supply | Flazh || Eeprom | Fuses | Security
Program Device Security Fuzes / Secunty Level PC Fuses:
Fuse Programming &ction;
- Set Default
Program Y erify w
[Read fram Fuse file, Edit'/alue...
Irnpart...
Fuses PC Fusze State Target Fuze State Drezcription Expart...
LE1 1 - UNPROGRAMMED 1 - UNPROGRAMMED Lock Bit1
LB2 1 - UNPROGRAMMED 1 - UNPROGRAMMED Lock Bit 2 Target Fuses:
BLEO 1 - UNPROGRAMMED 1 - UNPROGRAMMED Eoot Lock Bit 01 ——
BLBOZ 1 - UNPROGRAMMED 1 - UNPROGRAMMED Eoot Lock Bit 02 % Read
BLE11 1 - UNPROGRAMMED 1 - UNPROGRAMMED Eoot Lock Bit 11 » wit
BLE1Z 1 - UNPROGRAMMED 1 - UNPROGRAMMED Eoot Lock Bit 12 s
-1' Werify
" Erase
<< Copy
Fuze Values: 023F

3.14.3 Verifying the Security Fuses of a Target Device

To verify the Security Fuse Values in a Target Device with the Fuse Values in the ‘PC Fuse State’

column:

e Click the <Verify> button
¢ Any differences in the Fuse Values between the PC settings and the Target Device setting will
now be displayed.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 40
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.14.4 Writing the Security Fuses into a Target Device

e To stop anyone from reading / copying the contents of AVR devices, it is usual practice to
‘Lock’ the device at the end of the programming sequence.

e To lock the FLASH and EEPROM from being read back, set the ‘LB1’ and ‘LB2’ Lock Bits to
‘0.

e To program the Fuses values in the ‘PC Fuse State’ column into the Target Device, click the
<Write> button

Fuzes FC Fuze State Target Fuse State Dezcription
LE1 0 - PROGRAMMED ? Lock Bit 1
Le2 0 - PROGRAMMED ? Lock Bit 2
BLEOM 1 - UNPROGRAMMED 7 Boot Lock Bit 01
BLEOZ 1 - UNPROGRAMMED 7 Boot Lock Bit 02
BLE11 1 - UNPROGRAMMED 7 Boot Lock Bit 11
BLB12 1 - UNPROGRAMMED 7 Boot Lock Bit 12

e The programmer will now program all the Security Fuses at the same time and then read them
back and verify them with the values in the ‘PC Fuse State’ column.

e The programmer will then report a PASS or FAIL for programming of the Security Fuses.

e The Target Device is now locked

Please note:
e Once the Lock Bits have been programmed on an AVR Device, it is then no longer possible to
read or re-program the FLASH or EEPROM memory areas.
e The Configuration Fuses and Security Fuses can usually still be read from a Target Device
even if the device is locked.

3.14.5 Erasing the Security Fuses

The only way to change a Security Fuse from a ‘0’ to a ‘1’ is to perform a ‘Chip Erase’ operation.
This will erase the FLASH / EEPROM and then finally erase the Security Fuses and set them back to
a value of ‘1.

3.14.6 Using a ‘Fuse File’ to import Security Fuse settings into a project

It is possible to export the ‘Fuse Values’ for a particular device to a so-called ‘Fuse File’ so that a
single copy of the fuses is stored in one place. This ‘Fuse File’ can then be shared amongst many
projects if required. See section 6 for further details about using ‘Fuse Files’ .

3.14.7 Importing Security Fuse Settings in HEX format from AVR Studio

If the original firmware for your project has been developed using the Atmel ‘AVR Studio’ software,
then it is likely that the ‘Security Fuse Settings’ are defined as ‘Hex Fuse Bytes’. Please refer to
Section 5 for instructions on how to import these ‘Hex Fuse Bytes’ into your EQTools project.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 41
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

3.15 Exporting an EDS Project to a Standalone Project

Once you have fully tested your EDS Development Project, it is possible to add the project to a
Project Collection and then upload it to a programmer as a so-called ‘Standalone Project’. The
project can then be executed on a programmer without requiring any form of PC control.

Please follow the instructions detailed in Section 6 to upload your EDS project to a programmer.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 42
Version: V1.17 — 11" Feb 09

%Hiﬂ_e.!‘, Application Note

The Imbedded Solutions Company.

4.0 Exporting / Importing Fuse Settings to /
from File

4.1 Overview

One of the new power features of EQTools is the ability to export the ‘Fuse Settings’ for a
Programming Project to a Fuse File (*.eff). This allows the settings for all the fuses to be contained in
one Fuse File which can then be imported into any of the Fuse tabs in Project Manager or in the
<Fuses> tab in EDS. In this way, the values of all the Fuses for a particular project can be shared
with other projects. This helps to ensure that the correct fuse values are specified in all projects.

4.2 Exporting the Fuse Settings to a Fuse File

To export the settings of the ‘Local Fuses’ column to a fuse File:
e Select the EDS <Fuses> Tab
e Set up the ‘Local Fuses’ to the correct values for your Target Device.
e Click the <Export> button - a file browser is displayed.
e Enter a suitable name for your Fuse File eg. project_fuses.eff
e Click <Save> - The ‘Local Fuses’ column is transferred to your specified Fuse File (*.eff).

4.3 Copying the Fuses from a Target Device

To copy the Fuses from the Target Device to a Fuse File:

e Select the EDS <Fuses> Tab

e Click the <Read> button
- the Fuses are read from the Target Device and are then displayed in the ‘Target State’
column.

e Click the <<Copy button
- the Fuse settings read from the Target Device are copied into the ‘Local State’ fuse
column.

e Click the <Export> button - a file browser is displayed.

e Enter a suitable name for your Fuse File eg. project_fuses.eff

e Click <Save> - The ‘Local Fuses’ column is transferred to your specified Fuse File (*.eff).

4.4 Importing the Fuse Settings from a Fuse File

To import the settings of the ‘Local Fuses’ column from a Fuse File:
e Select the EDS <Fuses> Tab
e Click the <Import> button > a file browser appears
e Browse to and select your Fuse File (*.eff)
- The Fuse settings are then automatically copied from the Fuse File to the ‘Local Fuses’
column.
e To program these settings into a Target Device, click <Write>.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 43
Version: V1.17 — 11" Feb 09

Application Note

5.0 Importing Fuse Settings in HEX format
from AVR Studio

5.1 Overview

If the original firmware for your project has been developed using the Atmel ‘AVR Studio’ software
then it is likely that both the AVR ‘Configuration Fuse settings’ and the ‘Security Fuse Settings’
are defined as so-called ‘Hex Fuse Bytes’. This is the raw version of the fuses where each ‘Hex
Fuse Byte’ can represent up to 8 individual ‘Boolean Fuses’. It is possible to import the ‘Hex Fuse
Bytes’ from AVR Studio into an EQTools project by following the instructions in the next section.

5.2 Finding the AVR Studio ‘Hex Fuse Values’

In the Atmel ‘AVR Studio’ software, the ‘Configuration Fuse settings’ for your project are displayed
on the <Fuses> tab — see screenshot below.

- JTAGICE mkll in JTAG mode with ATmegal6%

bd ain] Program Fuses]LockBits] ﬂdvanced] Hiwd Settings] HWInfo] Auto]

BODLEVEL [Brown-out Detection Disabled -
RSTDISBL]
OCDEM]
JTAGEM [+]
SPIEM]
WDTON [w]
EES&VE]
BOOTSZ Boot Flash size=1024 words start address=$1C00 -
BOOTRST]
CEDIME e
CEouT Il
SUT_CKSEL Int. RC Dsc.; Start-up time: & CK + 0 ms -
EXTENDED 0=FF
HIGH 0=29
Lo 0=42
M Auto read
W Srmart wamings
[“erify after progranmmming Pragram Werify | Fead |
Entering programming made.. OK! »

Wiriting fuses (low tohigh).. 0x42, Ox&9, 0<FF . OKI

Reading fuges [low to high).. 0242, 049, 0<FF . OKI

Fuse bits verification.. OK

Leaving programming mode.. 0K v

The *‘AVR Studio’ software displays a high-level overview of the fuses, grouping similar fuses
together with more meaningful group names eg. ‘BODELEVEL’ is made up of two fuses:
BODLEVELO and BODLEV1 and the fuse ‘SUT_CKSEL' actually represents the following six
Boolean fuses: SUTO, SUT1, CKSELO, CKSEL1, CKSEL2, CKSELS3.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 44
Version: V1.17 — 11" Feb 09

Btno Application Note

TECHNOLODIES

The Imbedded Solutions Company.

These Fuse values are then converted by AVR Studio into 'Hex Fuse Bytes’. For AVR
microcontrollers, the ‘Hex Fuse Bytes’ are called ‘LOW’, ‘HIGH’ and ‘EXTENDED’ — see
screenshot from AVR Studio above.

In this example, the ‘Hex Fuse Bytes’ are as follows:
EXTENDED: OxFF
HIGH: 0xA9
LOW: 0x42

5.3 Importing the AVR Studio ‘Hex Fuse Values’ into EQTools

It is possible to import the AVR ‘Hex Fuse Bytes’ from AVR Studio into EQTools. This functionality
requires that EQTools build 927 or above is installed.

Instructions:

1. Launch your project in EDS (Development Mode)
- Launch your project in EDS (Development Mode) and then select the <Fuses> tab.

Owerview || Programmer | Target Device | Target Oscilator | SPI Settings | Target Power Supply | Flash | Eeprom | Fuses | Security
Program Post-Eraze Fuse Bits PC Fuses:
Fuze Programming Actian:
Program/erify -» RESET “ o
] Read from Fuse file. Enter Hex..
Import...
Fuzes PC Fuze State Target Fuze State Degcription Export...
€3 CK3ELD 0 - PROGRAMMED ? Clock Select 0
€3 CKSELT 1-UNPROGRAMMED 7 Clack Selzct 1 Target Fuses:
€3 CKSEL2 0 - PROGRAMMED ? Clock Select 2
€3 CKSELD 0 - PROGRAMMED 7 Clock Select 3 ¥ Read
suUTo 0 - PROGRAMMED ? Select Oscillator Start Up Time 0)
SUTH 1 - UNPROGRAMMED 7 Select Dzcilator Start Up Time 1 M
craut 1- UNPROGRAMMED 7 Clack Output P Verly
CKDIvE 0 - PROGRAMMED ? Divide Clock by 8 —
BOOTRST 1- UNPROGRAMMED 7 RESET Wectar << Copy
BOOTSZ0 0 - PROGRAMMED ? Boot Size 0
BOOTSZ1 0 - PROGRAMMED ? Boot Size 1
EESAVE 1- UNPROGRAMMED 7 Preserve EEPROM during ERASE - ENA...
wDTOM 1- UNPROGRAMMED 7 ‘w/atchdog Timer - Always ON
€ SPIEN 0 - PROGRAMMED ? 5Pl Programming EMABLE
€3 JTAGEN 0 - PROGRAMMED ? JT4G Port - ENABLE
OCDEM 1- UNPROGRAMMED 7 On-Chip Debug [OCD] - EMABLE
BODLEVELD 1 - UNPROGRAMMED 7 Brown-out Detector Trigger Level 0
BODLEYELT 1 - UNPROGRAMMED ? Brown-out Detector Trigger Level 1
BODLEVELZ 1 - UNPROGRAMMED 7 Brown-out Detector Trigger Level 2
Local Fuge Walues: 0x62,0x93,0:FF

e The default ‘library’ settings for the Fuses are displayed in the ‘PC Fuse State’ column. These
fuse values represent a virgin AVR device which has never been programmed before.

e The ‘Local Fuse Values’ in Hex format are displayed at the bottom of the window. These
values represent the current settings of the fuses in the ‘PC Fuse State’ column.

e The ‘Local Fuse Values’ are displayed in the following order: LOW, HIGH, EXTENDED

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 45
Version: V1.17 — 11" Feb 09

%ﬂmox Application Note

The Imbedded Solutions Company.

2. Click the <Enter Hex> button
e The ‘Enter Fuse Values’ dialog box is displayed:

Enter Fuse Values E

Enter the Hex value for each Fuze Byte

Fuse Byte LOW:
[

Fuze Byte HIGH:
0=39

Fuze Byte Extended:
0=FF

Click <0K> to convert these Fuse Hex values to
Boolean Fuze Values

[1] l[Cancel l

e The Hex values displayed as default are the values corresponding to the default Fuse Settings
already specified in EQTools.

e Enter the ‘Hex Fuse Bytes’ from AVR Studio in the relevant Fuse Value fields: LOW, HIGH,
EXTENDED. These fields correspond to the same fuse field values in AVR Studio — see
example below.

From AVR Studio — Fuses tab: Enter into EQTools — Enter Hex values.....

Main] Progiam Fuses }LockBilsl ﬁdvancedl Hw Sellings] HWInfD] Autt l

BODLEWEL |Emwn-out Detection Disabled

RCTDISEL D Enter the Hex walue for each Fuse Bute

QCDEN [] Fuse Byte LOW:

JTAGEM E D2

SPIEN D

WOTON [v] Fuze Byte HIGH:

EESAVE D (]

BOOTSZ Bioot Flash size=1024 wards start address=$1C00 Fuse Byte Extended:

BOOTRST |:| O4FF

CKDIV vl "

ckout

SUT_CKSEL Int. R Dsc. Statup tme: 6 CK -+ O ms Click <0 to convert these Fuze Hex values to

Boolean Fuse Walues

EXTEWDED [FF oK l [Cancel

HIGH (kA9

L0t 42

e Click the <OK> button to accept the Fuse

In this example, ‘Hex Fuse Bytes’ are as values _
follows: e EQTools will then convert these bytes into
EXTENDED: OxFF the Individual Boolean Fuse values.
HIGH: OxA9
LOW: 0x42
Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 46

Version: V1.17 — 11" Feb 09

€QUINOX

TECHNOLODIES

The Imbedded Solutions Company.

Application Note

i Action: Convert Hex Fuse Values
\\) Result: PASS

The Hex Fuse values entered have been converted to show the Boolean Fuse Values {individual Fuses
Bits) - see the 'Fuses' column. If an unspecified bit is set this will be ignored.

Please check that these values correspond with the datasheet for the Target Device,

- The Hex values which you entered are now converted to the corresponding individual Boolean
fuses for each Fuse Byte.

Fuzes PC Fuze State Target Fuze State Dezcription
CKSELD 0 - PROGRAMMED Clack Select 0
CKSELT 1 - UNPROGRAMMED Clock Select 1
CKSEL2 0 - PROGRAMMED Clock Select 2
CKSEL3 0 - PROGRAMMED Clock Select 3
sSUTo 0 - PROGRAMMED Select Ozcillator Start Up Time 0
SUTH 0 - PROGRAMMED Select Ozcillator Start Up Time 1
CKout 1 - UNPROGRAMMED Clock Output
CKDINE 0 - PROGRAMMED Divide Clock by 8
BOOTRST 1 - UNPROGRAMMED RESET Wector
BoOTSZ0 0 - PROGRAMMED Bioat Size 0
BOOTSE1 0 - PROGRAMMED Boot Size 1
EESAVE 1 - UNPROGRAMMED Preserve EEPROM during ERASE - EMABLE
WDTOM 0 - PROGRAMMED watchdaog Timer - Always ON

€3 SPIEN 1 - UNPROGRAMMED SPI Programming EMAELE

€3 JTAGEN 0 - PROGRAMMED JTAG Port - EMABLE
OCDEM 1 - UNPROGRAMMED On-Chip Debug [OCD] - EMABLE
BODLEVELD 1 - UNPROGRAMMED Brown-out Detector Trigger Level O
BODLEVELT 1 - UNPROGRAMMED Brown-out Detector Trigger Level 1
BODLEVELZ 1 - UNPROGRAMMED Brown-out Detector Trigger Level 2

Local Fuse Yalues: 0x42,0x49 0=FF

e The ‘Local Fuse Values’ represent the ‘Hex Fuse Values’ and they should have the same
values as the Fuse Bytes specified in the ‘AVR Studio’ project.

3. Export the ‘PC State Fuses’ to a Fuse File
It is possible to export these Fuse Settings to a ‘Fuse File’ as follows:
e Click the <Export> button
e Save the fuse settings with a suitable name e.g. ATmegal69_ SPI_Fuses.eff

4. Read the fuses from the Fuse file
e Once you have exported the Fuse Settings to a Fuse File, you can then include these Fuse
Settings in any project.
e |n EDS, on the <Fuses> tab, tick the ‘Read from Fuse File’ check box and then browse to
and select your Fuse File.

Fiead from Fuse file.

C:skemphE DS _Documentationt T megal 69_Fuzes EFF

e The project will then automatically use the Fuse Settings in the specified Fuse File.
e The Fuse File can also be used by any other project allowing the fuse values to be shared
between many projects if required.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 47
Version: V1.17 — 11" Feb 09

%ﬂlm Application Note

The Imbedded Solutions Company.

5.4 Importing the AVR Studio ‘Hex Security Fuse Values’ into
EQTools

In AVR Studio, the ‘Security Fuse settings’ for your project are displayed on the <Lock Bits> tab
and will be defined as one or more ‘Hex Security / Lock Bytes'. This is the raw version of the fuses
where each ‘Hex Security Fuse Byte’ can represent up to 8 individual ‘Boolean Fuses’.

It is possible to import the AVR ‘Hex Security Fuse Bytes’ from AVR Studio into EQTools. This
functionality requires that EQTools build 927 or above is installed.

1. Launch your project in EDS (Development Mode)
e Launch your project in EDS (Development Mode) and then select the <Security> tab.

Overview | Programmer | Target Device | Target Dscilator | JTAG Settings | Target Power Supply | Flash || Eeprom | Fuses | Security

Program Device Security Fuges /7 Security Level PC Fuzes:
Fuze Programming Actian: 3
Frogram/erify R = L
[1Read from Fuse file. Enter Hex...
Import....
Fuzes PC Fuze State Target Fuse State Diescription Export...
LE1 1 - UNPROGRAMMED Lack Eit 1
LB2 1 - UNPROGRAMMED Lock Bit 2 Target Fuses:
BLEOT 1 - UNPROGRAMMED Boat Lack Bit 01
BLEOZ 1 - UNPROGRAMMED Baat Lock Bit 02 o Eet
BLE11 1 - UNPROGRAMMED Boot Lock Bit 11 * wi
BLE1Z 1- UNPROGRAMMED Boet Lock Bit 12 Q—” :
P Werify
“% Erase
<4 Copy
Lacal Fuse Values: 04FF Target Fuses : 77777

e The default ‘library’ settings for the Fuses are displayed in the ‘PC Fuse State’ column.
e These fuse values represent a virgin AVR device which has never been programmed before
which should be “unlocked” ie all Lock Bits are set to ‘1'.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 48
Version: V1.17 — 11" Feb 09

%ﬂmox Application Note

The Imbedded Solutions Company.

2. Click the <Enter Hex> button
e The ‘Enter Fuse Values’ dialog box is displayed:

Enter Fuse Values gj

Enter the Hex walue for each Fuze Byte

Security Byte 0
0«FF

Click <0K> to convert these Fuse Hex values to
Boolean Fuse Walues

[Ok][Catcel l

o The value(s) displayed as default are the values corresponding to the individual Boolean Fuse
Settings already specified in EQTools.

e Enter the ‘Security Hex Fuse Byte(s)’ from AVR Studio in the relevant Fuse Value field(s).

e Click <OK> to convert the Hex value(s) to Boolean fuses.

Action: Convert Hex Fuse Values
\1) Result: PASS

The Hex Fuse values entered have been converted to show the Boolean Fuse Values {individual Fuses

Bits) - see the 'Fuses' column,

OK

e Click <OK> - the individual Boolean Security fuses are now displayed:

Owerview | Programmer | Taget Device | Target Oscilator | JTAG Settings | Target Power Supply | Flash | Eeprom | Fuses | Securty
Program Device Security Fuses / Security Level PC Fuzes:

Fuze Programming Action:
Set Default

L

Pragram:erify L

[Read from Fuse file.

__Eooi. |

Impart...
Fuzes PC Fuze State Target Fuse State Description Export...
LE1 0 - PROGRAMMED Lock Bit 1
LB2 0 - PROGRAMMED Lock Bit 2 Target Fuses:
BLEDT 1 - UNPROGRAMMED Boot Lack Bit 01
ELBO2 1 - UNPROGRAMMED Boot Lack Bit 02 % FHead
BLE11 1 - UNPROGRAMMED Boot Lack it 11 * wi
BLB12 1 - UNPROGRAMMED Boot Lock Bit 12 e
-#' Werify
‘% Eraze
<4 Copy
Local Fuse Walues: 04FC Target Fuses : #7977
Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 49

Version: V1.17 — 11" Feb 09

Application Note

3. Export Security Fuses to a Fuse File
e Click <Export> and then save the Security Fuses to a Fuse File called
eg. ATmegal69_Security.eff.
e This file can then be automatically read back into your programming project by selecting
‘Read from Fuse File’ and then specifying the relevant Fuse File.

4. Reading the Security Fuses from a Fuse file
e Once you have exported the Security Fuse Settings to a Fuse File, you can then include
these Fuse Settings in any project.
e In EDS, on the <Security> tab, tick the ‘Read from Fuse File’ check box and then browse to
and select your Fuse File.

Fead from Fusze file.

C:MtemphaTmegalB34aTmegal6d Security Fuses EFF

e The project will then automatically use the Fuse Settings in the specified Fuse File.
e The ‘Security Fuse File’ can also be used by any other project allowing the fuse values to be
shared between many projects if required.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 50
Version: V1.17 — 11" Feb 09

%!!i!&.!‘, Application Note

The Imbedded Solutions Company.

6.0 Creating a Standalone Project

6.1 Overview

Once you have tested your project fully in EDS (Development Mode), it is possible to then make this
project into a ‘Standalone Project’ which can be uploaded to a programmer. This single standalone
project file (*.prj) will contain all the information required to program the Target Device including
FLASH file, EEPROM file, Fuse settings, Security Settings etc.

6.2 Creating a Standalone Project from EDS (Development Mode)

In EDS (Development Mode), select the <Overview> tab

Owerview | Programmer | Target Device | Target Ozcillator | JTAG Settings || T arget Power Supply | Flash | Eeprom || Fuses || Security

Project Infarmation:

= Open ¢ Modify Baze Programming Project

L
Totak -

rﬁﬁ Add Project file to a new Project Collection

%} Update this project in an existing Project Collection

C:temphd T mega2beh AT mega2Bel- TAG. PPM

Project Mame: Author:
Project Wersion: LCreation Date
1.0.00 19/06/2008 W

Pleaze note: To upload thiz project to a programmer, pleasze either add the project to
an existing Project Collection or create a new Project Collection.

e If this is the first time the EDS Project has been uploaded to a programmer, click the
<Add Project File to a new Project Collection> button.

¢ If the EDS Project has already been uploaded to a programmer before, click the
<Update this project in an existing Project Collection> button.

6.3 Add Project File to a new Project Collection

When the <Add Project File to a new Project Collection> button is pressed, the EDS project will be
automatically added to a new ‘Project Collection’.
e The EDS Project will appear in a ‘Project Manager’ window.
e You will then be prompted to save the ‘Project Collection’. Choose a suitable name eg.
Test.ppc and click the <Save> button.

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 51
Version: V1.17 — 11" Feb 09

Application

e B

Mumber Unique |d Werzion Build D ate Target Device Min Firnware | Size [pages]
Gl ATMEGAZSEOSITAG 1.0.0.0 19/05/2008 at 1551 ATmega2SE0 (). 307 3

Information

j) Operation: Project has been added to a new Project Collection.
‘fou now need to Save the Project Collection file with a suitable name e.g. myprojectcollection.ppc.

The name can contain up to 128 characters and can be a mix of upper, lower and alphanumeric
characters.

The Project Manager window is now displayed — see section 6.4.

6.4 Uploading a Project to a programmer

The Project Manager window displays all the projects in your Project Collection.

E® Project Manager - C:\temp\ATmega256\Test.PPC g@@
MNumber | Unique Id Wersion Build Date Target Device Min Fimnware | Size [pages] Mame Authar Relative Path
Ciag ATMEGA2SE0JTAG 1.0.00 20405/2008 at 11:21 ATmega2560 (JTAG) 307 3

| | "' Upload all projects. .

Programmer Type: PPM3MK2 | Total FLASH usage - Used: 1.0 KB (0.0%:), Free: 4.0 ME bytes (100.0%:)

In this example we have only one project called ‘ATMEGA2560-JTAG'.
The ‘Unique ID’ is the ‘Project Name’ which is also the file name you saved the project with in EDS.

To upload the project to the programmer:
¢ Click the <Upload all projects> button
-> uploads all the projects in the collection to the programmer.
or
e Click once on the project you wish to upload in the Project Manager window and then click
the <Upload selected project> button
- uploads only the selected project in the collection to the programmer.
Follow the on-screen Upload Wizard instructions to complete the uploading of the project(s) to the
programmer(s).

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 52
Version: V1.17 — 11" Feb 09

Application Note

6.5 Re-testing a Project in EDS (Development mode)

If you want to re-test a Programming Project in EDS (Development Mode), the simplest method to do
this is as follows:

e Use Project Manager to open your Project Collection (*.ppc file)

e Click once on the project which you wish to test in EDS mode. This will select the project.

ke Project Manager - C:\temp\ATmega256\Test.PPC

Mumber | Unique Id Wersion Build Date Target Device Min Firnware | Size [pages] Mame Awthor Relative Patk
JTAG 1.0.0.0 A 2

CId Edit Project | %« Test Project in EDS "% Upload all projects. ..

Programmer Type: PPM3MK2 | Total FLASH usage - Used: 1.0 KB (0.0%:), Free: 4.0 ME bytes (100.0%:)

e Click the <Test in EDS> button
- The selected project will now be opened in EDS (Development Mode).

Equinox Development Suite (EDS)... - C:\temp\ATmega256\Test ATMEGA2560-JTAG.EDS M=

Overview | Programmer | Target Device | Target Oscilatar | JTAG Settings | Target Power Supply | Flazh | Eeprom | Fuses | Security

Project Infarmation:

= Open / Modify B aze Programming Project

1olar -

Add Project file to a new Project Caollection

Chy |Ipdate thiz project in an existing Project Collection

C:MemphaTmega2BbhaTMEGAZSE0- TAG. PP

Project Mame: Author:
Project Yersion: Creation Date
1.0.00 20/08/2008 b

Pleaze note: To upload thiz project to a programmer, please either add the project to
an exizting Project Collection or create a new Project Collection.

e You can now test your project in EDS (Development Mode).

Application Note 101 — SPI In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 53
Version: V1.17 — 11" Feb 09

