ive Application Note

The Embedded Solutions Company

Report No:

AN105

Title:

In-System Programming (ISP) of Atmel AVR
FLASH Microcontroller devices using the
JTAG Programming Interface

Author: Date: Version Number:
John Marriott 7" June 2010 1.23

High-speed JTAG ISP Programmers...

L

...designed for Production Programming

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be
changed without prior notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not
convey nor imply any license under patent or other industrial or intellectual property rights

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family

1

Ptne Application Note

The Embedded Solutions Company

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 2

ive Application Note

The Embedded Solutions Company

Contents
0 L oo LT £ o 5
11 FBATUIES ettt e e e e e e e e e e e e e e e e e reeaaeeas 5
GENEIAl FEALUIES ...ttt e e e e e e e e e e e e e e e s aabba e e e e e e e e e e aaanns 5
JTAG chain (JTAG daisy-Chained MOE)ccoiiiuuriiiiiieee e e e e s 6
[N ‘DeVelopmMENnt MOt e e e e e e e e e e e e s 6
[N ProdUCtion MOOE’cooiee et e e e e e e e e e e e e annnee s 6
Compatibility with Atmel AVR Studio SOftWAre.........ccueeiiiiiiiiiee e 6
Importing settings from Atmel ELF File supported...........ccooiiiiiiiieeee e 7
Compatibility with Atmel JTAG-ICE MK1 / MK2 DebUQQENcceiiuuiiiaeiiiiie e 7
1.2 Programmers SUPPOIEAeeiiiiiiiiiiiiiieee ettt e e e s e e e e e e e e e e e e e e e e as 8
1.3 DBVICE SUPPOIT ...ttt ettt et e e et e e e e be et e e s ne e e e e s annne e e e eanreeeeaans 9
1.4 JTAG versus SPLalgorithm ...t 10
1.5 JTAG AIGOrtm OVEIVIEWcoiiiiiiiiiiiiiie et e e e e e e e e e e e e e as 11
1.6 SP1 AIGOrtNM OVEIVIEW ...ttt 12
1.7 Upgrading your Equinox Programmer to support JTAGccuviiiiiiiiiiiiiieeee e 13
1.7.1 Purchasing @ JTAG LICENSE ..ottt 13
1.7.2 How do | enable the programmer for JTAG?cuviiiiiiiiii e 13
1.7.3 Upgrading an Epsilon5, FS2003 and FS2009 to support JTAG.........cccovviiieeeiiiieeeeee 13
1.7.4 Upgrading a PPM3-MK2 and PPM4-MK1 Programmer to support JTAGccccuveeee. 14
1.7.5 Entering the License String to upgrade your programmeroouueieeeeeeeeeeeeninneenen 15
1.8 Other related appliCation NOESeiii i 16
2.0 JTAG Programming AlgOrithm........ccccviiimmiminiiemsiisss s s s s s s 17
P2 B O 1Y =T PRSP PPRPTPT 17
2.2 JTAG FRALUIES ..ottt ettt et e ettt e e e e e e e b e e e e e anee e e e eaa 18
2.3 JTAG PCB design / ISP cable guIdelines............coocuuiiiiiiiiiiiiiiiee e 18
2.4 JTAG single-chip In-System Programming (ISP) SchematiC...........ccccuiiieiiiiiiiiiiie 19
2.5 JTAG signals — TDI, TDO, TMS, TCK.....eoi it 20
2.6 AVR RESET SIgNal.....eeiiiiiiiiiieitieie ettt e e e e e e 21
2.7 JTAG-in-a-chain In-System Programming (ISP) SchematiC............cccouuiiieiiiiiiiiiiiiieeeee 22
2.8 JTAG connector compatibility with Atmel JTAG ICE MK1/MK2..........c.cooiiiiiiiiiiiiiee e 23
2.9 Atmel 10-way JTAG Header (JTAG INTEIrfaCe)ccuvieeiiiiiiiiiiiiee e 24
2.10 ISPnano Programmer — JTAG CONNECHIONSceiiiiiiiiiiiiiiieee et 26
2.11 ISPnano - CONMOD Module - JTAG CONNECLIONSuuuiiiiiiiieiiiiiiieiee e 27
3.0 Creating a JTAG Programming Project.........cccociiirmmmmmmiinnnsissessns s sssssssssssssss s s 29
O @ V=T o 1= ST PP PP 29
3.2 Information required to create @ JTAG Project.........oooo i 29
3.3 Creating an EDS (Development Project)cueeiiiiiiiieiiiiiee et 30
3.3.1 Launching EDS and selecting a Target DevVICe..........cueeviiiiiiiiiiiiiiee e 30
3.3.2 Target OsCillator SEHINGS ... e 31
3.3.3 Target System — Power Supply SetiNGSuueeeiiiiiiiiii e 32
3.3.4 Specifying the FLASH (COd€) Fil€.....ccceiiiiiieieeee e 33
3.3.5 Specifying the EEPROM (Data) File........c.uuiiiiiiiii e 34
3.3.6 Launching EDS at the end of the EDS Wizard............ccuuiiiiiiiiiiiieeeeee 35
3.4 Testing a JTAG Project in Development (EDS) MOde...........cooiiiiiiiiiiiiiiiiieee e 36
IV I C N (= To (U 1T o o USRI 37
3.6 JTAG Device Chain SELHNGSooeeiiieieiee e a e e e 38
381 OVEIVIBW ...ttt e ettt et e e e oo e e bbbt e et e e e e e e e aabbee e e e e e e e e e e annnbnneeeaaaeas 38
3.6.2 JTAG Chain SEHINGSeeeiiiietee e 39
3.6.3 JTAG Chain — Devices BEFORE / AFTER parameterscccoooiiiiiiiiieeieeiiieeeeeeen 39
3.6.4 JTAG Chain — Instruction Bits BEFORE / AFTER parameters..........cccccceeiiiiiiiiiieeeneenn. 40
3.6.5 Calculating the ‘Bits BEfOre’ ValUeccuueeiiiiiiiiiiiiic e 40
3.6.6 Calculating the ‘Bits After’ VAIUEcooiiiiiiiiiiiee e 40
3.6.7 Summary of the JTAG Chain Settingsuuiiiiiiiii e 41

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 3

ive Application Note

The Embedded Solutions Company

3.7 Testing JTAG communication with the Target Chip.........coooii i 42
3.8 Programming the FLASH Ar€a........c.uueiiiiiiiiii et 43
3.9 Programming the EEPROM AF€a........coiiiiiiiiiiiiiiiie ettt 44
3.10 Erasing the FLASH / EEPROM @reaoooiiiiiiiiee et 45
3.10.1 Erasing the FLASH @rea......cccoiuiiiiiiiiiii ettt 45
3.10.2 Erasing the EEPROM area — special considerationsccccveiiiieeeeiniieee i 45
3.11 Programming the Configuration FUSEScouiiiiiiii e 46
K O O =T o1 PR PTPT P 46
3.11.2 Reading the Fuses from a Target DeVICe...........cccuuiiiiiiiiiiiiiiiee e 47
3.11.3 Verifying the Fuses of a Target DeVICEcc.uuiiiiiiiiiiee e 47
3.11.4 Writing the Fuses into a Target DeVICEc.euiiiiiiiiiiieee e 48
3.11.5 Using a ‘Fuse File’ to import Fuse settings into @ projectcccceeeeeiiiiiiiiieenens 48
3.12 Programming the SeCUrity FUSESccoiiiiiiiiiii e 49
K 2 I @ =T o1 PR 49
3.12.2 Reading the Security Fuses from a Target DeviCeeeviiiiieiiiiiiiiee e 50
3.12.3 Verifying the Fuses of a Target DeVICEecooociiiiiiiiii e 50
3.12.4 Writing the Security Fuses into a Target DeviCe...........ooouuiiiiiiiiiiiiiieee e 51
3.12.5 Erasing the SeCUNtY FUSEScooeeiieeeiee e 51
3.13 Internal Oscillator Calibration — Factory OSCAL Byte........ccueviiiiiiiiiiiiiieeceieee e 52
K G T I =T 1= PR 52
3.13.2 Reading / writing the Oscillator Calibration Byte in EDS mode..............euvvvvviieveeennnnnnnns 52
3.13.3 Writing the Oscillator Calibration Byte in STANDALONE modeccccoocvieiiiiiieneenne 54
3.14 Exporting an EDS Project to a Standalone Project ... 54
4.0 Exporting / Importing Fuse Settings to / from an Equinox Fuse File.........cccoecccmmiiiiniiiiinnenns 55
O IO YT = PRSPPI 55
4.2 Exporting the Fuse Settings t0 @ FUSE File.........c.ooiiiiiiiii e 55
4.3 Copying the Fuses from @ Target DEVICEccooiiiiiiiiiiiie e 55
4.4 Importing the Fuse Settings from a Fuse File ... 55
5.0 Importing Fuse Settings in HEX format from AVR Studiocooemmmmiiiniiiiismnnn s 57
BT OVEBIVIBW ...ttt e et e e e e bttt e e e a bt e e e et e e e e e e e e e nnna e e e e 57
5.2 Finding the AVR Studio ‘Hex FUSe Values’cooiiiiiiiiiiiiiieeeee e 57
5.3 Importing the AVR Studio ‘Hex Fuse Values’ into EQTOO0ISc.uuvviveiieiiiiiiiiceee e 58
5.4 Importing the AVR Studio ‘Hex Security Fuse Values’ into EQTOOIScccvvveeeeeeeiiiiininen. 61
6.0 Creating a Standalone Programming Project.........cccccccmmniimmmmnnimsnmnnssss s sssssssens 65
8.1 OVEBIVIBW ...ttt ettt oottt e e oo oo e ab bttt e e e e e e e e e a bbbt e e e e e e e e e e nnbbbe e e e e e e e e e e nnnneees 65
6.2 Creating a Standalone Project from EDS (Development Mode)ccevveeiiiiiiiiiieeneeeeieiiee, 65
6.3 Add Project File to a new Project ColleCtion ... 65
6.4 Uploading a Project 10 @ Programmer............cceii oottt 66
6.5 Re-testing a Project in EDS (Development MOde)..........eviiiiiiieiiiiieeee e 67

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 4

ive Application Note

The Embedded Solutions Company

1.0 Introduction

This application note describes how to develop and implement In-System Programming (ISP)
support for the Atmel AVR microcontroller family using the ‘YTAG Programming Interface’. The
document details how to make a JTAG ‘Programming Project’ which will operate on any Equinox
ISP programmer. A full description of all connection method required to implement JTAG In-System
Programming (ISP) of the Atmel AT90USB, AT90CAN and ATmega AVR FLASH Microcontroller is
also discussed.

1.1 Features

The Equinox range of programmers includes solutions for development, low / mid / high volume
production and field programming of Atmel AVR microcontrollers.

General features

High-speed In-System Programming (ISP) support of Atmel AVR microcontrollers using the
‘JTAG programming interface’.

Programming solutions for development, low / mid / high volume production and field
programming of Atmel AVR microcontrollers

Programs the on-chip FLASH Memory, EEPROM Memory, Configuration Fuses and Security
Fuses

Uses the Atmel AVR standard ‘JTAG Debug Interface’ port as the ISP interface

Very high-speed programming due to local data storage in on-board FLASH inside the
programmer and optimised programming algorithms

Programmers can be used in “Standalone Mode" (no PC required)

Supports high-speed program / verify of the on-chip FLASH and EEPROM in a singe
operation.

Supports programming of the factory calibrated ‘Oscillator Calibration Byte’

Optimised Erase operations for FLASH and EEPROM

Supports programming of non volatile ‘Configuration Fuses’

Supports programming of the ‘Security Fuses’to protect code from being read out
Supports programming of any AVR microcontroller when placed in a ‘JTAG Chain’ (JTAG
daisy-chain mode)

Supports up to 256 devices in a single ‘JTAG Chain’

User-programmable ‘pre-programming state machine’ allows non-standard reset circuits to
be supported (both reset polarity and timing can be manually adjusted)

User-configurable ‘JTAG frequency’ allows the JTAG signals to be matched to the target
hardware / wiring

Target voltage can be measured and validated

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family

5

ive Application Note

The Embedded Solutions Company

JTAG chain (JTAG daisy-chained mode)

All Equinox programmers supports programming of an Atmel AVR microcontroller when it is
connected in a so-called ‘JTAG Chain’.
e Supports programming of any one of up to 256 devices in a single 'JTAG Chain’
e User-programmable JTAG chain settings allowing the user to set up the configuration of the
target device in the chain.
e Multiple AVR devices in a chain can be programmed sequentially one-after-the-other using a
single programmer by making a separate ‘standalone project’ for each device in the chain.
e High-current TDI drive pin to ensure good signal integrity throughout the chain

In ‘Development Mode’

All Equinox programmers can be used in ‘Development Mode’ where the programmer is controlled
via our EDS software application running on the PC. This allows the user to control all programming
operations under PC control and so is ideal for the initial set up and testing of programming projects.

e Powerful yet simple-to-use Development Suite called ‘EDS’

e All aspects of programming the AVR device can be controlled from the PC using EDS

e Erase, Program, Read or Blank Check both the FLASH and EEPROM areas under PC control
e Program/ Read back the ‘Configuration Fuses’

e Program / Read back the ‘Security Fuses’

e Program / Read back the factory calibrated ‘Oscillator Calibration Byte’

In ‘Production Mode’

It is all possible to use any Equinox programmer in standalone mode. In this mode, the programmer
operates without PC control and is capable of fully programming a target device.

e Programmers can be used in "Standalone Mode" (no PC required)

e Asingle ‘Standalone Programming Project’ can Erase the device, program /verify the
FLASH and EEPROM, program the ‘Configuration Fuse Bits’, program the ‘Oscillator
Calibration Byte’ and finally program the ‘Security Fuses’ all in a single operation.

e Upto 64 x AVR ‘Standalone Programming Projects’ can be stored inside an FS2003,
FS2009, PPM3-MK2, PPM4-MK1 or ISPnano programmer.

e Programmer can store multiple versions of firmware for different ‘customer product
versions’.

e A ‘Standalone Programming Project’ can be created from an ‘Atmel ELF File’ created by
e.g. AVR Studio

Compatibility with Atmel AVR Studio software

e Supports importing of Fuse and Lock Hex byte settings from AVR Studio
e Supports importing of FLASH, EEPROM, Fuse and Security settings from an ‘Atmel ELF File’
created by e.g. AVR Studio

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 6

Ptne Application Note

The Embedded Solutions Company

Importing settings from Atmel ELF File supported

e Supports importing of FLASH, EEPROM, Fuse and Security settings from an ‘Atmel ELF File’
created by e.g. AVR Studio

e Allows a ‘development user’to send a single ‘ELF File’ which can contain most of the data
required for production.

Compatibility with Atmel JTAG-ICE MK1 / MK2 Debugger

e All Equinox programmers can support connection to the standard Atmel 10-way AVR JTAG
IDC header connector.

e If your Target Board already works with the Atmel JTAG-ICE MK1 / MK2 debugger, then it
should work with any Equinox JTAG programmer.

e All Equinox programmers must be configured with the Equinox EQTools software. They will
not work with Atmel’'s AVR Studio software.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 7

Application Note

1.2 Programmers supported

All Equinox ISP Programmers are capable of supporting programming of Atmel AVR microcontrollers
using the ‘JTAG Programming Interface’. Some programmers offer this support as standard but
most require a ‘License upgrade’to be purchased. Please refer to the table below for full details.

Fig. 1.2 Equinox Programmer — SPIl and JTAG ISP Support

Programmer Programmer AVR SPI algorithms | AVR JTAG algorithms
Picture Order code
— EPSILON5(UN) Included as standard | UPGRADE:
i EPSILON5-UPGS3
e,
ooy
i,
— EPSILON5(AVR- EPSILON5-UPG17 Included as standard
35 JTAG)
o
ooy
i,
FS2003(UN) Included as standard | UPGRADE:
FS2003-UPG7
s
FS2009(UN) Included as standard | UPGRADE:
FS2009-UPG7
s
FS2009(AVRJTAG) | FS2009-UPG17 Included as standard
s
PPM3 MK2(UN) Included as standard | UPGRADE:
PPM3A1-UPG7
+ 10-CON-3 JTAG
Connector Module +
SFM-MAX-V1.3 Special
Function Module
PPM4 MK1(UN) Included as standard | UPGRADE:

PPM4MK1-UPG7

+ 10-CON-3 JTAG
Connector Module +
SFM-MAX-V1.3 Special
Function Module

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 8

ive Application Note

ISPnano UPGRADE UPGRADE
Series I /11 /1l ISPnano-UPG17 ISPnano-UPG7
ISPnano UPGRADE UPGRADE

KB BBz mows Series lll ATE ISPnano-UPG17 ISPnano-UPG7
S III!:I!ii }

ISPnano-MUX2 UPGRADE UPGRADE

ISPnano-MUX4 ISPnano-UPG17 ISPnano-UPG7

ISPnano-MUX8

e UPGRADE - Chargeable license upgrade required

1.3 Device Support

Please refer to the latest Device Support List for the devices which are currently supported by the
Equinox range of programmers.

This can be found:

1. As a Download available on the website:
- Click on the Downloads tab.
- Under ‘Download Type’ choose Device Support Lists / Release notes then click
Search.

2. Browsing on the Device Support tab under each product.

3. Inthe latest version of EQTools:
- Select EQTools. Go to <Programmer><Create a Device Report>.
- All programmers and devices supported are listed in this document.
- You will need the most recent EQ-Tools build version — please refer to the website for
further details.

Please note:

e As arule of thumb, only Atmel Atmega AVR devices with 16k bytes of FLASH or greater will
feature the JTAG Programming Interface.

e Some ATmega devices such as the ATmega8(L) and ATmega161(L) do not have a JTAG port
and so cannot support JTAG programming.

e Devices with greater than 128kb of FLASH memory require a firmware upgrade to version
3.01 or above in order to support programming of the upper 128kb.

e ltis possible to program devices connected in a ‘JTAG Chain’ using firmware 3.05 or above.
Please see Application Note — AN112 for instructions on updating your programmer
firmware.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 9

Application Note

1.4 JTAG versus SPI algorithm
The table below compares the JTAG and SPI programming algorithms for the Atmel AVR family of

microcontrollers.

Parameter

SPI algorithm

JTAG algorithm

Comments

Programming speed

Much slower than
JTAG

x3 or x4 times faster
than SPI

Depends on SPI/ JTAG
clock frequencies

Programming reliability

Depends on AVR
clock frequency

Very good

In-System Debugging Not possible Yes — use Atmel JTAG- | JTAG port normally
ICE debugger used during
development phase
Boundary Scan Testing | Not possible Yes — requires external | Very useful for

JTAG tester

production testing.

Multiple AVR
programming on same
Target Board

Very difficult in SPI
mode

Possible to daisy-chain
multiple AVR devices
in a JTAG chain.

Only one device can be
programmed at a time.

EEPROM programming
speed

Slow on most
devices as 1 byte

per page

x4 or x8 times faster as
programmed in 4 or 8
byte pages

Some newer AVR
devices do have ‘Page
Mode’ programming.

EEPROM Erase cycle

Each EEPROM byte
can be individually
erased

A Chip Erase is
required to erase any
non OxFF location

Cannot use JTAG mode
to re-program EEPROM
without erasing FLASH.

Programming pins
required

3 + RESET
MOSI, MISO, SCK

4 + RESET
TDI, TDO, TCK, TMS

RESET pin is required
for both SPI and JTAG

Programming pins can
be used for user 1/0?

Yes

Not recommended

Try not to put other
components on pins.

RESET pin control
required?

Yes

Yes

The RESET pin is
essential for SPI and
JTAG operation.

Programming
dependent on AVR
clock settings?

Programming will
fail if a valid clock is
not applied to the
AVR device.

Programming should
always work in JTAG
mode even if the AVR
does not have a valid
clock source.

In SPI mode, an AVR
device can be rendered
no longer programmable
by selecting an incorrect
clock source.

Possible to lock out SPI
/ JTAG port

Yes — but only from
JTAG mode

Yes — from SPI and
JTAG mode

Need to unset the
SPIEN or JTAGEN fuses

Scramble AVR fuses by
accident?

Very easy to do by
mistake!!!

Most fuse issues can
be recovered in JTAG
mode.

Use JTAG mode to
recover a device with
scrambled fuses.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 10

ive Application Note

The Embedded Solutions Company

1.5 JTAG Algorithm Overview

The JTAG algorithm provides a method of performing high-speed programming of an Atmel Atmega
AVR microcontroller. The same JTAG port can also be used for on-chip debugging of code using the
Atmel JTAG-ICE Debugger. The advantages and disadvantages of the JTAG algorithm are detailed

below.

Advantages
e The JTAG algorithm is approximately 3-4 times faster at programming compared to the SPI
algorithm.

e The programming time using JTAG for the EEPROM is significantly faster than the SPI
algorithm because in JTAG mode a ‘Page’ of EEPROM is programmed at a time rather than a
single byte. Each byte may take e.g. 9ms to program in SPI mode, where as a whole page of
e.g. 4 bytes may take 9ms to program in JTAG mode.

e The JTAG algorithm uses the same ‘JTAG Port’ as the Atmel JTAG-ICE Debugger. This
means that the same port can be used for both debugging during the development phase and
also programming during the production phase of the product.

e With the JTAG algorithm, the programming clock is supplied by the programmer and JTAG
logic inside the Target AVR device does not require any other clocking. This means that the
chip is not dependent on the settings of the ‘Clock Selection Fuses’in JTAG Mode.

e In JTAG mode is it possible to change the ‘Clock Selection Fuses’to any value and still
program the chip. (with the exception of the ‘YTAGEN’ Fuse)

e |tis possible to use the JTAG port of the Target Microcontroller to perform in-circuit testing of
the microcontroller and surrounding circuitry. This testing is performed by shifting Test Data
through the JTAG port of the Target Microcontroller. A JTAG Test System is required to
perform this testing. It is not supported by any Equinox Programmer or the Atmel JTAG ICE.

e |tis possible to daisy-chain multiple JTAG devices on the JTAG bus in a so-called JTAG
Chain’ and then select to program a particular device in the chain. This functionality is now
supported by Equinox programmers running firmware 3.05 and above.

Disadvantages

e The JTAG Programming Interface uses 5 pins: TCK, TDI, TDO, TMS and RESET.

e The JTAG pins of the microcontroller are not designed for off-board use and should not be
shared with any other circuitry on Target Board. This means that the JTAG port pins must be
dedicated for programming / debugging.

e In JTAG mode the EEPROM is divided into ‘Pages’rather than ‘Single Bytes’. |t is therefore
more complicated to program a single byte in the EEPROM as the entire page (usually 4 or 8
bytes) must be read back and then the single byte overlaid on top of this data and finally the
entire page is then re-programmed back into the EEPROM.

e InJTAG Mode, it is not possible to re-program any location in the EEPROM which is not OxFF
without first performing a Chip Erase operation. This means that if the EEPROM already
contains any data, it is not possible to re-program this data without erasing the entire chip first.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 11

ive Application Note

The Embedded Solutions Company

1.6 SPI Algorithm Overview

The SPI algorithm is a simple 3-wire interface which can be used to program most AVR
Microcontrollers. The advantages and disadvantages of this algorithm are detailed below.

Advantages

e The SPI algorithm is supported by almost all Atmel AVR microcontrollers including AT90S,
AT90CANXxxx, ATtiny and ATmega devices. This means that the same Programming Interface
can be used on any products containing any AVR microcontroller.

e The SPI Programming Interface uses only 3 SPI pins (MOSI, MISO, SCK) and the RESET pin.

e The SPI pins can be used to drive other circuitry such as LED’s and switches on the Target
Board as well as being used for ISP purposes. However, this will require careful design on the
Target Board to ensure that the programming signals are not compromised.

e In SPI Mode, it is possible to reprogram a single byte of the EEPROM area without having to
perform a Chip Erase first.

e The SPI algorithms are supported as standard on all Equinox ISP Programmers.

Disadvantages

e In general terms, the SPI algorithm is 3-4 times slower than the JTAG algorithm.

e When using the SPI algorithm, the clock used during programming is supplied from either the
AVR Internal RC Oscillator or from an external crystal / resonator. The programming SPI
speed is completely dependent on the speed of this oscillator.

e |f the oscillator speed is slow, then the maximum SPI speed is seriously limited and the overall
programming will be very slow.

e |f the AVR ‘Clock Selection Fuses’ are incorrectly programmed in SPI mode, then the chip
may no longer have a valid oscillator and so will not respond to the programmer. This can
render the chip non-programmable except by physically removing it from the Target Board and
using either a JTAG or Parallel programmer to resurrect the correct fuse settings.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 12

ive Application Note

The Embedded Solutions Company

1.7 Upgrading your Equinox Programmer to support JTAG

The AVR JTAG algorithms are not supported as standard on any Equinox programmers (for
exceptions — see below®). It is necessary to purchase a ‘License Upgrade’ for AVR JTAG support
from Equinox. Equinox will then send you a ‘YTAG Upgrade License String’ which will upgrade your
programmer to support JTAG programming.

Please note
The following ‘Standalone programmer’ and ‘Bundle’ options have the AVR JTAG license pre-
installed, therefore these instructions are not necessary:

e Epsilon5(AVR-JTAG)

e EPS-AVRJTAG-BUNDLE

e FS2009(AVR-JTAG)

1.7.1 Purchasing a JTAG License

All Equinox ISP programmers require the purchase of a ‘License Upgrade’ to enable JTAG support.
Please see the table in section 1.1 for the relevant upgrade for your programmer.

1.7.2 How do | enable the programmer for JTAG?

To enable your programmer to support JTAG ISP programming, please purchase the relevant JTAG
Upgrade from Equinox or an Equinox distributor:

1. If you purchase the upgrade directly from Equinox
e Equinox will email you a ‘JTAG License String’.
e This string can be entered directly into the <Enter License> screen in EQTools.

2. If you purchase the upgrade from a distributor

e The distributor will send you the Upgrade Pack by courier.

e Within the Upgrade Pack you will find an Upgrade Form with a Code String on it.

e Email this Code String plus your programmer Serial Number to support@equinox-
tech.com

e Equinox will then send you a ‘JTAG License String’ which is keyed to your
programmer Serial Number.

e This string can be entered directly into the <Enter License> screen in EQTools.

1.7.3 Upgrading an Epsilon5, FS2003 and FS2009 to support JTAG

To upgrade an Epsilon5, FS2003 or FS2009 programmer to support JTAG, please follow the steps
below:
e Order An AVR JTAG License from Equinox
e Enterthe ‘UTAG Upgrade License String’ given to you by Equinox into EQTools — see
section 2.9.5 below.
e Make sure you have the required version of Programmer Firmware to support the device you
wish to program.
e Plug the 10-way ISP cable supplied with the programmer into the ‘J8 — JTAG-10’ ISP Header
on the programmer.
e Connect the other end of the 10-way ISP cable to the JTAG port on your Target Board
e You are now ready to program a Target AVR Chip via JTAG.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 13

Application Note

1.7.4 Upgrading a PPM3-MK2 and PPM4-MK1 Programmer to support
JTAG

To upgrade a PPM3-MK2 or PPM4-MK1 programmer to support JTAG, please follow the steps below:

e Order a ‘PPM3-MK2 / PPM4-MK1 JTAG upgrade’ from Equinox Technologies

e Enter the ‘JTAG Upgrade License String’ given to you by Equinox into EQTools — see section
2.9.5 below.

e The JTAG upgrade also includes a new ‘I/O Connector Module’ for the PPM3-MK2 and PPM4-
MK1 called the ‘1/0-CON-3’. This module has a JTAG 10-way header which has the same pin-
out as the JTAG-ICE.

e It also includes the High Speed / High Current Special Function Module ‘EQ-SFM-MAX-V1.3’.
This significantly reduces the overall programming times for many high capacity devices. For
full instructions on fitting this module please refer to Application Note AN115 provided with
your upgrade

e Make sure you have the required version of Programmer Firmware to support the device you
wish to program.

e Plug the ‘I/0-CON-3’ module into the programmer.

e Plug the 10-way ISP cable supplied with the programmer into the ‘JTAG’ ISP Header on the
‘I/0-CON-3’ module.

e Connect the other end of the 10-way ISP cable to the JTAG port on your Target Board

e You are now ready to program a Target Chip via JTAG

EQ-IOCON-3 1/0 Connector Module 3 (JTAG) — Fast Connect Version
O I/O connector module for In-System Programming (ISP) of Atmel microcontrollers
oeeneeenmeeomy | |USiNG JTAG protocol

Single-in-line header with all programmer I/O brought out for wire-wrapping
to bed-of-nails probe wires

e Screw terminals for power connections

e Target Vcc Status LED

e Link to connect / isolate the programmer Vcc from the Target Vcc

o @ Features:
D e Plugs into suitable Equinox programmer e.g. PPM3 or PPM4 Module
@, e Atmel 10-way JTAG IDC ISP connector (same as JTAG-ICE)
oo — e Atmel 6-way IDC ISP Header
B i e Equinox 10-way IDC ISP header

ooooao
ooooao

Please note

The ‘Atmel AVR JTAG License’ (Order code: PPM3A1-UPG7 / PPM4MK1-UPG7)
[°° |- is also required to enable the PPM3 and PPM4 to program Atmel AVR devices via
JTAG.

oa | [[LLL [EEEELT

@)

ooao
ooao

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 14

ive Application Note

The Embedded Solutions Company

1.7.5 Entering the License String to upgrade your programmer

Once you have received the License String from Equinox, please follow the steps below to apply the
upgrade to your programmer:

e Launch EQTools > The EQTools ‘Welcome Screen’ is displayed.

e Close down the EQTools ‘Welcome Screen’

e From the top menu bar, select <Programmer><Programmer Info>
- the Programmer Information screen is displayed

e (Click the <Enter License> button

- The <Enter License Key> screen is displayed.

Enter Licence key x|

It iz poszible to purchase License parades from Equinoes For thizs product which
will enable certain utiities or Device Libranes. Please refer to the Equinox
WWiebzite [hitp: /s, equinos-tech. com) far a full izt of upgrades far this product
or e-mail supportEequinos-tech. com,

Fleaze enter the 24 character Hexadecimal licence key provided by Equinos to
enable certain optionz.

ke |EAFIT7545535E ESATE544450

ok Cancel

Enter the License String you were sent by Equinox
e (Click <OK>
- EQTools should acknowledge that the attached programmer has been upgraded.

Information X

Operation: IIpdate Programmer Licence infarmation
Resulk; Pass

Press <0k > to view the updated programmer information.

Click <OK>

e If you now check the Programmer Info screen, you should find that the entry for
‘ATmega JTAG ISP’ is now ENABLED.

e Your programmer is now upgraded to support JTAG programming of Atmel AVR
Microcontrollers.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 15

ive Application Note

The Embedded Solutions Company

1.8 Other related application notes

The table below lists the Application Notes available for all Atmel microcontroller, serial EEPROM,
Serial FLASH and Serial DataFLASH devices.

Application | Device Family Programming
Note Interface
AN100 Atmel - AT89Sxxxx FLASH microcontrollers SPI
AN101 Atmel - AVR FLASH microcontrollers via the SPI Interface SPI
AN105 Atmel - AVR FLASH microcontrollers via the JTAG Interface JTAG
AN118 Generic 12C 24xxx Serial EEPROM memories 12C
AN122 Atmel - AT91SAM7 ARM7 FLASH microcontrollers JTAG
AN127 Atmel — XMEGA AVR FLASH microcontrollers via the 2-wire PDI PDI
interface
AN132 Atmel ATtiny AVR microcontrollers via the TPl interface TPI
AN133 Atmel AT45D Serial DataFlash programming SPI

These application notes can be found in PDF format on the CD-ROM which was supplied with the
programmer. You can also find the very latest versions on the “ISPnano Download Page” on the
Equinox website.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 16

ive Application Note

The Embedded Solutions Company

2.0 JTAG Programming Algorithm

2.1 Overview

The YTAG Programming Interface’ provides a method for both In-System Debugging (ISD) and
In-System Programming (ISP) of Atmel ATmega AVR Microcontrollers. It uses an industry-standard
set of signals to provide the connection between the programmer / debugger and the AVR
microcontroller. However, the actual JTAG Header (connector) used by Atmel and Equinox is specific
to Atmel AVR JTAG programming and will not match JTAG connectors for JTAG devices from other
manufacturers.

EEPROM

Fusgbit | Lockbit

In the development environment......

.....The JTAG Interface can be used for In-System Debugging of the code running on the actual
Target System. This method of operation requires the use of the Atmel JTAG-ICE MK1’ or 'JTAG-
ICE MK2’ debugger to program firmware into the FLASH of the target AVR microcontroller. Once the
code is downloaded into FLASH, it is then possible to execute and debug this code under PC control.
The debugger Software (AVR Studio) allows you to set breakpoints in the code, read / write memory
locations, look at register contents etc.

In the production environment.....

...... The JTAG Interface can be use for high-speed In-System Programming (ISP) of the Target
AVR Microcontroller. This method of operation requires the use of any Equinox ISP Programmer
which has been enabled to support the ‘“AVR JTAG’ algorithms.

The Equinox ISP Programmer range supports high-speed In-System Programming (ISP) of a single
or multiple Atmel AVR microcontrollers on a Target Board using the 4-wire JTAG inerface. Support
has now been added for programming of any Atmel AVR microcontroller when connected as part of a
‘JTAG Chain’. This mode allows multiple JTAG devices to be in-system programmed using a single
JTAG bus.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 17

Application Note

2.2 JTAG Features

e Fast Programming speeds

e Simple 4-wire JTAG bus connection + RESET signal

e JTAG programming does not depend on the AVR oscillator frequency so JTAG programming
will always work

e JTAG interface is compatible with the Atmel JTAG-ICE MK2 In-System Debugger so same
interface can be used for development and production.

e Both single microcontroller and ‘JTAG-in-a-chain’ implementations are supported

2.3 JTAG PCB design / ISP cable guidelines

The following guidelines are provided for designing an ‘AVR based Target Board’ which is to be
programmed via the JTAG interface.

e Proper decoupling - Make sure the AVR microcontroller is well decoupled.

e No JTAG in-line resistors - Avoid placing any resistors in the JTAG lines TDO, TDI, TCK,
TMS as this can skew the waveforms so the JTAG clock is not sampled correctly.

e No JTAG capacitors - Avoid placing any capacitors from any of the JTAG lines to OV as this
will slug the waveforms and probably stop JTAG working reliably.

e JTAG pull-up resistors - It is recommended that either the Target Board or the Test Fixture
has pull-ups e.g. 47k ohm on the JTAG signal lines. (The programmer does not have any pull-
ups)

e RESET pin connection - Make sure that the RESET pin of the target AVR microcontroller is
brought out to the programming header. It is essential that the programmer can control the
RESET pin of the AVR device !!!

e Cable length - Keep the cable length between the Target Board and the programmer as short
as possible. e.g. no more than 15¢cm in length.

e JTAG relays etc - Do not use any relays or electronics analogue switches in the JTAG signal
lines if at all possible.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 18

Ptne Application Note

The Embedded Solutions Company

2.4 JTAG single-chip In-System Programming (ISP) Schematic

The diagram below details the connections required to implement JTAG In-System Programming of a
single Atmel ATmega AVR Microcontroller using an Equinox ISP programmer.

Fig 2.4 — ATmega AVR — JTAG Programming Interface connections

| PROG vcc |

Reset
|_PROG_RESET |J:--:-- bl Circuit

x

RESET Vce

| PROG_TCK |————p] TcK

J

T
| PROG TDI = D1 | 4 Atmel

G ATmega

p Microcontroller
| PROG TDO |« 00 | o

R

T

| PROG_TMS [P Tms

Vss

[PROG_ GND |

ATmega AVR — JTAG Programming Interface - signal names and directions

Please note:
e The RESET connection is essential in JTAG mode. This allows the programmer to reset the
Target Microcontroller and release the JTAG port for programming.
e |tis recommended that either the Target Board or the Test Fixture has pull-up resistors e.g.
47k ohm on the JTAG signal lines.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 19

Application Note

2.5 JTAG signals — TDI, TDO, TMS, TCK

The JTAG programming interface for AVR devices uses four data lines: TDI, TDO, TMS and TCK.
The table below shows the relevant direction of each JTAG signal line.

Programmer Signal description Signal Connect to Signal direction
Signal Name direction AVR (from
(from Microcontroller | Microcontroller)
Programmer) | Pin
PROG_TCK Test Clock Pin Output TCK Input
PROG_TDI Test Data Input Output TDI Input
PROG_TDO Test Data Output Input TDO Output
PROG_TMS Test Mode Select Output TMS Input
PROG_RESET | RESET Output RESET Input

When programming in JTAG mode, the programmer provides the clock to the “JTAG TAP
Controller” inside the target AVR device. The programmer clocks data out of the ‘TDI’ pin on the
programmer into the “TDI’ pin on the AVR device.

DOiaZaIn Da‘la(.‘lut
j_l I:I - I:I] |||

2

Fusebit | Lockbit

I I I
I_l]
Con l:rul

Clack —J—*

This data is then shifted through a shift-register inside the AVR device and appears out of the ‘TDO’
pin on the AVR device. This bit-stream is then fed back into the programmer ‘TDO’ pin.

Please note:

e Itis recommended that either the Target Board or the Test Fixture has pull-ups e.g. 47k ohm
on the JTAG signal lines.

e The target AVR device must drive the “TDO’ pin back via the ISP cable to the programmer.
This pin is susceptible to noise and skew as the AVR only drives the pin for part of the duty-
cycle of the waveform. It may be necessary to use a stronger pull-up or some sort of buffering
on this pin if long ISP cables are being used.

e No in-line resistors or capacitors to 0V should be placed in any of the JTAG signal lines as
they could skew / slug the waveforms leading to erratic programming operation.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 20

ive Application Note

The Embedded Solutions Company

2.6 AVR RESET signal

When programming Atmel AVR devices using the JTAG Interface, it is imperative that the
programmer can control the RESET pin of the target AVR microcontroller. It does not matter if the
RESET signal from the programmer goes through other logic on the Target Board, as long as the
programmer is capable of forcing the RESET pin LOW when commencing a JTAG programming
operation.

The reasons for requiring control of the RESET pin are as follows:

e If any user firmware which is programmed into the target AVR device writes to any of the
JTAG pins or sets up the ‘Data Direction Registers’ of the JTAG port incorrectly, then the
JTAG port will no longer operate correctly and entering JTAG programming mode will fail.

e If any user firmware which is programmed into the target AVR device happens to execute the
AVR instruction to disable the JTAG port (usually for power consumption reasons), then the
programmer will not be able to enter JTAG programming mode.

e The programmer must assert the RESET pin of the target AVR microcontroller LOW when
commencing a JTAG programming operation. This forces the AVR device to stop running
firmware and releases / resets the JTAG port so the programmer can communicate with it.

Warning!

e Any AVR Target System which does not allow control of the RESET pin may be
programmable once only via JTAG and then all subsequent attempts to enter JTAG
programming mode may fail.

e Once the target AVR device is in JTAG mode, the RESET pin will have no effect until JTAG
mode has been exited. This will hold the AVR device in reset so it cannot execute code.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 21

ive Application Note

The Embedded Solutions Company

2.7 JTAG-in-a-chain In-System Programming (ISP) Schematic

The diagram below details the connections required to implement JTAG In-System Programming of
either a single or multiple Atmel ATmega AVR Microcontrollers which are connected in a JTAG
Chain’ arrangement.

Fig 2.7 — ATmega AVR — JTAG Programming Interface connections

GHD 'r
WVCGC
L LR e e
| E
Y Y Y
RESET Voo GMD RESET Voo GMD RESET Ve GMD
JTAG JTAG JTAG
Device Device Device
1 2 n
Tl DO p———#=] TDI DO p—®=| TDI TOO f—™
TCK TMS TCK TMS TCK TMS
T I A ‘[A T
| TCK § .
| TMS |l
[0 Je

The TDI signal is fed into the TDI input on the first JTAG Device in the chain. The data path then goes
through the first device and comes out on the TDO pin. The TDO pin is connected to the TDI pin of
the next JTAG Device in the chain.

ATmega AVR — JTAG Programming Interface - signal names and directions

Programmer Signal description Signal Connect to Signal direction
Signal Name direction AVR (from
(from Microcontroller | Microcontroller)
Programmer) | Pin
PROG_TCK Test Clock Pin Output TCK Input
PROG_TDI Test Data Input Output TDI Input
PROG_TDO Test Data Output Input TDO Output
PROG_TMS Test Mode Select Output TMS Input
PROG_RESET | RESET Output RESET Input
Please note:

The RESET connection is essential in JTAG mode. This allows the programmer to reset the Target
Microcontroller and release the JTAG port for programming.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 22

ive Application Note

The Embedded Solutions Company

2.8 JTAG connector compatibility with Atmel JTAG ICE MK1/MK2

The JTAG port of an ATmega AVR Microcontroller can be used for both debugging and programming
purposes. The Equinox YTAG ISP Header’ pin-out found on all Equinox ISP Programmers uses the
same pins as the Atmel ‘JTAG ICE MK1 / MK2 Debugger’ so it is possible to use the same
connector / cabling for both programming and debugging.

Fig. 2.8 JTAG ISP 10-way IDC Header

Atmel 10-way JTAG IDC Header Atmel JTAG ICE MK1 or Equinox ISP Programmer
MK2

2

PROG_TCK ! PROG_GND

PROG_TDO PROG_VCC

PROG_TMS PROG_RESET

T T

11111

—
o

1

~

PROG_VCC N/C

Xe)

PROG_TDI PROG_GND

Important notes:

1. RESET pin connection

The RESET pin of the AVR Microcontroller must be brought out to the ISP Header. It is not actually
required for the JTAG algorithm as the control of programming initiated via a JTAG command.
However, the Equinox programmer / Atmel JTAG-ICE can use the RESET pin to RESET the Target
AVR microcontroller to ensure that the AVR JTAG port is not driving any /O pins which could cause
contention during programming. The JTAG-ICE also needs control of the RESET pin to force the AVR
microcontroller to execute code when in debugging mode.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 23

Application Note

2.9 Atmel 10-way JTAG Header (JTAG Interface)

This connection method is suitable for interfacing any Equinox ISP Programmer to a Target System
which features the following:
e An Atmel device which features a JTAG ISP port e.g. ATmegai128 /64 / 32/ 16 etc.
e Atmel 10-way IDC JTAG Header
e The pin-out is the same as the “JTAG connector” used on the Atmel JTAG-ICE MK1 / MK2
debuggers., STK500, STK600 and all associated Atmel STK plug-in boards.

To implement this connection, simply plug the 10-way ISP cable into the JTAG ISP Header and plug
the other end of the cable into the matching header on the Target System.

5 Figure 2.9 - Atmel 10-way JTAG IDC Header viewed from

PROG_TCK |—1 —e o——| PROG_GND above
PrROG.T00 —14—o o4 PrOG VCC
PROG_TMS 2 3—0 —1° PROG_RESET Warning!
proa vee 21— o138 ™ Connecting to the wrong ISP Header may cause
= catastrophic damage to the Programmer & Target
9 10 p g g

Pin |Programmer Programmer |Connect to Description

No |Pin name Input / pin on
Output Target Device
1 PROG_TCK O TCK JTAG TCK - Test Clock Signal pin
Clock signal from programmer to Target
Device JTAG port.
2 PROG_GND P GROUND Ground Connection

Common ground connection between
Programmer and Target System.

w

PROG_TDO TDO JTAG TDO - Test Data Output pin
Data signal from Target device JTAG port
to programmer.

N

PROG_VCC P TARGET_VCC | Target Vcc Connection

- Pins 4 + 7 are physically connected
inside the programmer.

- Connects to Vcc rail of Target System.

- Pin referred to as VTref on Atmel JTAG-
ICE.

(6]

PROG_TMS O TMS JTAG TMS - Test Mode Select pin
Mode Select Signal from programmer to
Target Device JTAG port.

»

PROG_RESET |O RESET Microcontroller RESET control signal
This pin connects to the main RESET pin
of the Target Microcontroller.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 24

ive Application Note

The Embedded Solutions Company

7 PROG_VCC P TARGET_VCC | Target Vcc Connection

- See pin 4

- Pins 4 + 7 are physically connected
inside the programmer.

8 N/C O N/C Not Connected

9 PROG_TDI O TDI JTAG TDI — Test Data Input pin
Data signal from programmer to Target
Device JTAG port.

10 |PROG_GND P GROUND Ground Connection
Common ground connection between
PROGRAMMER and Target System.

Key

O - Output from programmer to Target Device
| - Input to programmer from Target Device

P - Passive e.g. GROUND and power rails
N/C - Not connected

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 25

Application Note

2.10 ISPnano Programmer — JTAG connections

The illustration below shows the location of the ‘Target ISP Connector’ port on the rear panel of the
ISPnano Series | / Il and Il programmers.

15 13 11 9 7 5 3 1 ‘Target ISP Connector’ port
—J The connector is a 16-pin bump-polarised IDC
0000006060 F06 connector with 0.1” pin spacing.
Pin 1 is the top right pin as shown in the diagram
O0000000 opposite.
16 14 12 10 8 6 4 2

The table below details the connections for programming Atmel AVR microcontrollers via the JTAG
Interface using the ISPnano programmer ‘Target ISP Connector’ port

Pin Programmer Programmer | Connect to Notes
No Pin name Input / pin on
Output Target System
1+2 |TARGET_VCC P TARGET_VCC Target VCC
3+4 |TARGET _EXT VCC|P See notes. Target External VCC
5+6 |PROG_GND P Signal GROUND Signal Ground Connection
(V)
10 Programmer 1/05 I/O Spare 1/0
11 Programmer 1/04 I/O JTAG - TMS JTAG — Test Mode Select
12 Programmer 1/03 I/O JTAG - TCK JTAG - Clock
13 Programmer 1/02 I/O JTAG - TDO JTAG — Data Out
14 Programmer 1/0O1 I/O JTAG - TDI JTAG — Data In
16 PROG_RESET @) RESET Target RESET control pin

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 26

Application Note

2.11 ISPnano - CONMOD Module - JTAG connections

This section describes how to use the 1ISPnano CONMOD Module’ to connect an

ISPnano programmer to an ‘Atmel AVR microcontroller’ using the 4-wire JTAG interface. The
programmer connects to the 16-way IDC port labelled (3) and the ‘Atmel AVR microcontroller’
connects to the 10-way IDC connector labelled (1) in the picture below.

1 2

Please note:

e The ‘Atmel JTAG’ 10-way IDC connector — marked (1) in the above picture has the same pin-
out as the standard ‘JTAG’ found on the Atmel JTAG-ICE MK1/MK2 debugger and also the
STK500 / STK600 evaluation kits.

e All relevant connections for JTAG are already made on the CONMOD board so there is no
need to add any other connections to get JTAG to work.

Instructions

e Referring to the annotated picture above

e Plug the 16-way IDC cable supplied with the programmer between the programmer ‘Target
ISP Port’ (16-way IDC connector) and the CONMOD Module 16-way header (J7) — see arrow
(3).

e The JTAG Port’is the 10-way IDC connector labelled ‘Atmel JTAG’ — see arrow (1)

e Set up the ‘Target Vcc Select’ jumper so that the programmer powers the Target Board — see
red box marked (2) in the picture.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 27

Ptne Application Note

The Embedded Solutions Company

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 28

€QUINOX

The Embedded Solutions Company

3.0 Creating a JTAG Programming Project

3.1 Overview

A Programming Project for an ‘AVR JTAG Device’ can be created in exactly the same as you would

for an ‘SPI Device’ except that the device must now be selected from the JTAG Device Library. All

the settings are the same except for the <Pre-Programming State Machine> and the <JTAG
Settings>.

3.2 Information required to create a JTAG Project

The following information is required about the Target Board in order to create a JTAG Programming

Application Note

Project:
| Information / data required Example
1 | AVR Device part number ATmega2561
2 | JTAG connections / connector on Target board | Atmel 10-way IDC connector
3 | JTAG configuration i. Single JTAG device
or

i. JTAG device is part of a 'JTAG chain’

4 | JTAG chain configuration parameters e Devices before: 0
e Devices after: 0

These parameters are required if the device to e Bits before: 0

be programmed is part of a ‘JTAG chain’. If a e Bits after: 0

single device is to be programmed via JTAG,

then simply set all the ‘JTAG Chain’

parameters to ‘0’.
5 | Target device oscillator frequency e.g. 12 MHz
6 | Target System Vcc voltage e.g. 3.3V
7 | Target System maximum current consumption | e.g. 100mA
8 | FLASH area ‘Program File’ Binary (*.bin) or Intel Hex (*.hex)
9 | EEPROM area ‘Data File’ Binary (*.bin) or Intel Hex (*.hex)
10 | Configuration Fuse values i. Boolean fuse values:

These fuse values describe how the
‘Configuration Fuses’ in the ATmega device are
to be programmed.

e.g. SPIEN=0, CKSEL=1, CKSEL2=0 etc

or
ii. Fuse Hex values from ‘AVR Studio’
e.g. 0x22 0x45 0x34

11

Reset circuit parameters

e.g.
e Capacitor / Resistor circuit
e Watchdog supervisor circuit
e Voltage monitoring circuit

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family

29

ive Application Note

The Embedded Solutions Company

3.3 Creating an EDS (Development project)

The simplest way to create a Programming Project for a JTAG device is to use the EDS
(Development Mode) Wizard as follows:

3.3.1 Launching EDS and selecting a Target Device

e Launch EQTools

e Select <Create a new Development (EDS) Project> - the EDS (Development) Wizard will
launch

e Click <Next> - the <Select Target Device> screen will be displayed.

Select Target Device... @

Search for Device Micra Details | Notes

ATmegazob b anufacturer
Atmel
= M Atmel m.e
=27 Microcontroller F amnily:
= | .ﬁ.TMega [.JT.-’-'-.G] ATMega UTAG)
0 [ITAG] Device Code:
8 ATnega2stl (TAG ATmegaZ560 [JTAG]
% ATmega2SE1 [TAG) _
% ATmegaZB61V [ITAG] Flash Size:
=7 ATMeaa [SPI) 262144 [0x40000)
% ATmegs2560-16 EEPROM Size:
% ATmega2560-8 4036 (01000]
%% ATmega2561-16 _
% ATmega561V-8 Signature:
041 3501
Werzion,:
1.05R
Library: ATmega.LIE Description: ATmegal{AVR) Library (SPT/ITAG) Version: 1,65R,

k. l [Cancel

e Type in the ‘Device Part Number’ eg. ATmega2560 into the ‘Search for Device’ field
- a list of all matching devices will be displayed in the box underneath.
e Select the required device from the list and then click <OK>
-> the device is now selected.
e On the next screen, check that the device selection and all other device parameters are

correct
e The project is set to automatically read and validate the ‘JTAG ID’ of the Target Device by

default. The ‘JTAG Revision’ is not validated if the first digit of the ‘JTAG ID’ is ‘0’.

Check Signature Read JTAG ID:
1=1E3301 (x05307 03F

e If you do not want to validate the ‘JTAG ID’, untick the ‘Read JTAG ID’ tick box.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 30

ive Application Note

The Embedded Solutions Company

o (lick <Next> to advance to the next screen

3.3.2 Target Oscillator Settings

This screen allows you to set up the ‘Target Oscillator frequency’ .
The ‘Target Oscillator frequency’ is the frequency which the Target Device is being clocked at
during the In-System Programming Process.

Equinox Development Suite(EDS) Wizard... - Untitled

Target Chip Oscillator Settings
Select the Oscillatar Type [Internal or External] and Frequency of the Target Chip
) External Dscillator) Internal RC Dscillator Programmer OP4 Clock
Internal Ogcillator Frequency OF4 Clock Frequency
1.000000 MHz w 1.8432 MHz ps
Oscillator Frequency: []wiite Calibration Byte to: Ta enable OP4 Clock, select
Min 'SCKZ_IN' followed by 'SCE2_EMN'
00Hz in Pre-Program State Machine
Maw
8.0Hz
Set Default
Motes:
[< Back][Mest >] [Close

INTERNAL RC Oscillator

e Many Atmel AVR devices feature both an ‘INTERNAL RC’ on-chip oscillator and also the
ability to run from an EXTERNAL crystal or Ceramic Resonator.

e When a virgin device from Atmel is programmed for the first time, it will usually be running
from an INTERNAL Oscillator.

e The frequency of the oscillator is usually set at the factory to be approximately 1MHz.

e This INTERNAL Oscillator is ‘factory calibrated’ by Atmel — see section 3.13 for further
details on how to use the factory calibrated OSCAL value.

e |f the Target Device is running from an INTERNAL oscillator e.g. TMHz internal, select
‘Internal Oscillator’ and select the internal oscillator frequency from the drop-down list.

EXTERNAL Oscillator:

e If the Target Device is running from an EXTERNAL oscillator e.g. crystal or ceramic resonator,
select ‘External Oscillator’ and enter the oscillator frequency. This frequency should be
written on the oscillator component itself or on the circuit schematic.

e The ‘Programmer OP4 Clock’ can be used to clock a device which has no oscillator. This is
not required for JTAG programming.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 31

Application Note

Please note:

The Target Oscillator speed is not technically required for JTAG programming as the programmer
provides the clock during programming. If you do not know the Oscillator Frequency, simply leave
all settings as the default values.

3.3.3 Target System — Power Supply Settings

This screen allows you to set up the Power Supply characteristics of your Target System.

Target System Fower Supply Settings
Select Target System Yaoltage and Current Conzumption
Target Yoltage Settings Programmer Controlled Power Supply
Yoltage Programmer contralled T arget Power Supply: O8N
50 iIJ Mastirnurn Current [méd) Powerdown Time [mz]
Tolerance [mY] 200 il 1000 il
500 il Current Settle Time [mz] PSU Out OK Delay [mz]
Stabilise Time [ms] 100 -2 500 %
200 il Yoltage Settle Time [mz]
100 -2

Power Statuz at end of project:

Poweer Supply iz switched OFF at end of project w

i. Select the Target Voltage

e This should be the voltage at which the Target System is being powered during the
programming operation.

e Set the ‘Voltage Tolerance’to be as wide as possible e.g. 500mV to allow for power supply
variations. If the programmer is powering the Target System, this will also give a faster power-
up time.

e |t may be possible to power just the Target Microcontroller rather than the entire Target
System.

ii. Set up the Target Powering and current parameters
e This option is only available for the PPM3-MK2 programmer.
e |f the programmer is to power the Target System, select <Programmer controlled Target
Power Supply: ON>
e Set the ‘Maximum Current’ to the maximum possible current which the Target System could
draw from the programmer.
e Leave all other settings as default.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family ~ 32

ive Application Note

The Embedded Solutions Company

3.3.4 Specifying the FLASH (Code) File

This screen allows you to specify the Code (firmware) file which is to be programmed into the FLASH

area of

the Target Device. This is an optional step — you can also specify the file once you are in the

Development Suite (EDS).

® Fquinox Development Suite(EDS) Wizard... - Untitled

FLAS

H Area Programming Options
Select the required pragramming options for the FLASH memary area
[C]Blark Check Flazh

Operation: () None (8 Programerify (O Werify Only
Flash File | Timings

Flash File: |C:\temph] TAG_TestingtFLASH. hex

Shabus: Loaded Ok Tupe: Intel Hex [Generic)

Min Add. [0x0000 Max &dd, 0<3FFF Bytes: 16384 [0x4000) CRC |0x6205

Buffer: Dizcard leading 0-FF Discard trailing 0«FF

Write: (®) Auto Flange () Custom: Write From| 020000 To |Ox3FFF Bytes: [16354
Motes:

< Back H Mext >][Close

i. Blank Check the FLASH

If the chip has been erased at the start of the programming cycle, then the FLASH should
already be blank (i.e. all locations contain the value OxFF).

If you want to be absolutely sure the FLASH is blank, you can enable the ‘Blank Check Flash’
option. This will perform a full Blank Check of the FLASH area to check that all locations are
set to OxFF.

Warning — this check can be time-consuming and will increase the overall programming time!

ii. Selecting the FLASH File

Click the <Browse> button

Browse to and select the file you wish to load and then select <OK>

If the input file is a BINARY file then the wizard will load the data in from file starting at address
0x0000 and continuing contiguously to the end of the file.

If the input file is an INTEL HEX file then the wizard will load in from file from the start address
specified in the file to end address specified in the file.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 33

ive Application Note

The Embedded Solutions Company

3.3.5 Specifying the EEPROM (Data) File

This screen allows you to specify the EEPROM (data) file which is to be programmed into the
EEPROM area of the Target Device. This is an optional step — you can also specify the file once you
are in the Development Suite (EDS).

® Equinox Development Suite(EDS) Wizard... - Untitled

EEPROM Area Programming Options H

Select the required programming options for the EEPROM memory area

[Blark Check Eeprom

Operation: () None (3 Programerify () Werify Only
E eprom File Timings

Eeprom File: |C:\temp W JTAG_Testing\EE hex

Status: wiarming: File iz too large for device Tupe: Intel Hex [Generic)
im Add. (0<0000 tax Add. 0=0FFF Bytes: 4096 (0=1000] CRC: [0=BODF

Buffer: Dizcard leading Ox=FF Dizcard traling 0=FF
wirite: @ Auto Range () Custorn: Write From|0x0000 | To | O=OFFF Bytes; (4036

Motes:

< Back H Mext >][Cloze

i. Blank Check the EEPROM

e If the chip has been erased at the start of the programming cycle, then the EEPROM should
already be blank (i.e. all locations contain the value 0xFF).

e However, if the Target Device has an ‘EESAVE’ fuse and this fuse is ENABLED (EESAVE=0),
then the EEPROM will not be erased during the Chip Erase operation.

e If you want to be absolutely sure the EEPROM is blank, you can enable the ‘Blank Check
EEPROM'’ option. This will perform a full Blank Check of the EEPROM area to check that all
locations are set to OxFF.

e Warning — this check can be time-consuming and will increase the overall programming time!

ii. Selecting the EEPROM File

e Click the <Browses button

e Browse to and select the file you wish to load and then select <OK>

e If the input file is a BINARY file then the wizard will load the data in from file starting at address
0x0000 and continuing contiguously to the end of the file.

e If the input file is an INTEL HEX file then the wizard will load in from file from the start address
specified in the file to end address specified in the file.

e In JTAG Mode, the granularity of the EEPROM Memory is either 4 or 8 bytes. This means that
the programmer will always program in blocks of 4 or 8 bytes. Your input file will therefore be
rounded up to the nearest block of 4 or 8 bytes.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 34

TECHNDOLOGIES

- Application Note

The Embedded Solutions Company

3.3.6 Launching EDS at the end of the EDS Wizard

Once you reach the end of the EDS Wizard, click the <Test> button to launch the project in the
Equinox Development Suite (EDS).

Congratulations!

“r'ou have now created a Development [EDS] project. This can be fully tested under PC contral
with the EDS Development Enviranment. The Project can then be uploaded to a programmer
and executed in *Standalone Mode'. To test this project in Development Mode:

- Click the <Testy button below

- Save pour project with a suitable name eg. myproject. ppm

- Your project will launch in the Equinox Development Suite [EDS).

- 'f'ou can now interactively program the Target Chip under PC control.

Fleaze note:
“r'aur project will be saved in the EQTools installation directary by default.
Fleaze select an alterative directony to zave pour projects when pou save the EDS project.

To program:

- FLASH area of the Target Chip, select the <FLASH: tab.
-EEPROM area of the Target Chip, select the <EEPROM? tab.
- Configuration Fuzes of the Target Chip, zelect the <Fuges> tab
- Security Fuses of the Target Chip, select the <Security> tab

Tao upload thiz praject ko a progranimer:

- Once in EDS mode, test all aspects of the Programming Project

- Select the <Overview: tab

- Click the <Add Project to a new Project Collection: button

- Uze Project Manager to upload the Programming Project to the attached programmer.

Enter a name for the EDS project e.g. ATmega256 and click the <Tests button
- your project will now launch in EDS (Development) Mode.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 35

Application Note

3.4 Testing a JTAG Project in Development (EDS) Mode

If you have clicked the <Test> button at the end of the EDS Wizard, then an EDS (Development
Mode) session will now launch.

Equinox Development Suite (EDS)... - C:\temp\JTAG_Testing\ATmega2561V.EDS
Owerview | Pragrammer and Device | Target Ozcillator | JTAG Settings | Target Power Supply | Flazh || Eepram | Fuzes | Security

Froject Infarmatian:

= Open ¢ Modify Baze Programming Project | Qu#

Add Project file to a new Project Callection |

G &

q%]n} Update this project in an existing Project Collection |

C:htemph TAG_Testing AT mega2BE1V. PP

Project M ame: Author:
Praject Yersion: LCreation [ate
1.0.00 258/10/2007 b

Please note: To upload this project to a programmer. please either add the project to
an existing Project Collection or create a new Project Collection.

Main Settings:
O pticr: Walue
Target Device ATmega2bE1y [(ITAG)
Pragramming Interface JTAG [Atmel)
Target Woltage B +/- BO0m
Programmer Powers Target 'es
Fre-Programming State Machine 8 - Atrnel ATmega AWR Microcontroller - JTAG ISP
Flasgh file Cstemp JTAG_TestinghFLASH. hex
Eeprom file C:stempsd TAG_T esting EE hex
JTAG Settings:
Speed Setting: SLOW
JTAG Freguency: 833 kHz
4 ?

The following default settings will be used:
e SLOW JTAG speed at maximum SLOW frequency
e Single JTAG device (no JTAG Chain)
e Target System not powered by programmer (unless enabled during the EDS Wizard)
e The default JTAG pre-programming state machine will be used.
e The Configuration Fuse Write is disabled (can be enabled in EDS)
e The Security Fuse Write is disabled (can be enabled in EDS)

At this stage there are still a few parameters which may need to be set up / checked before the
programmer will communicate with the Target Device on the Target Board.

Please follow the instructions in the next sections which explain how to set up the:

e JTAG Frequency
e JTAG chain settings

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 36

Ptne Application Note

The Embedded Solutions Company

3.5 JTAG Frequency

The JTAG Frequency must be set up before any programming operation can take place.

To set up the JTAG Frequency, select the <JTAG Settings> tab.

Owverview | Programmer | Target Device | Target Oscillator | JTAG Setings | Target Power Supply | Flash | Eeprom | Fuses | Security

JTAG Frequency
(%) Slow Frequency: b axirnurn Slow Frequency

1.266 kHz 833 kHz 833 kHz

JTAG Daisy Chain Mode - supported by ATmega [JTAG Miscellaneous 5ettings

[] Target Device iz part of a JTAG chain Fead | OPCODE
0007
= = IR Length
w04

There are two choices of JTAG frequency setting:

i. Slow JTAG (default setting)
e Selecting the SLOW JTAG option allows you to specify a JTAG frequency from 30 kHz up the
maximum SLOW JTAG frequency.
e This option should be used if there are reliability problems with JTAG programming using the
‘FAST JTAG’ option. If the JTAG frequency is slowed down, the reliability of programming
often increases.

ii. FAST JTAG

e This option is now available on most Equinox ISP programmers.

e |f the programmer is a PPM3-MK2 or PPM4-MK1, then the programmer must be fitted with
either the EQ-SFM-MAX-V1.2 or EQ-SFM-MAX-V1.3 Special Function Module.

e Selecting the ‘FAST JTAG’ option selects a single high-speed JTAG frequency which is fixed
for the selected programmer.

e This option should be tried to see if reliable programming of the Target System is possible. If
programming proves to be unreliable, then try using the ‘SLOW JTAG’ instead.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 37

ive Application Note

The Embedded Solutions Company

3.6 JTAG Device Chain settings
3.6.1 Overview

It is possible to set up a Programming Project so that the programmer is able to program an Atmel
ATmega microcontroller when the device is part of a so-called ‘UTAG Chain’. This is where the
Target AVR Device is connected on a shared JTAG Bus in a ‘'JTAG Chain’ configuration. The AVR
microcontroller can be in any position in the ‘YJTAG Chain’ and the chain can also contain other JTAG
devices which are not AVR microcontrollers. The data is shifted into the first device in the chain via
the TDI pin and is then output on the TDO pin which connects to the TDI pin of the next device in the
chain. In this manner, the JTAG bitstream is shifted through all the JTAG devices in the chain until it
comes out of the TDO pin of the last device in the chain which connects back to the TDO pin of the
programmer.

GMD 'r
WVCGC
RESET ----------------.I--------P'--------- ‘—-------------------—-----? --------- Procecccast “esssmsnossessssssoeeesseny
| =
Y Y Y
RESET Voo GMD RESET oo GMD RESET Ve GMD
JTAG JTAG JTAG
Device Device Device
1 2 n
Tl DO p———#=] TDI o0 p—®=| TDI TDD —m
TCK TMS TCK TMS TCK TMS
o] I A ‘[A T
TCK) .
| ™S |l
[0 Je

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 38

Ptne Application Note

The Embedded Solutions Company

3.6.2 JTAG Chain settings
To set up the position of the Target AVR Device in a JTAG Chain, select the <JTAG Settings> tab.

JTAG Daizy Chain Mode - zupported by ATmega2bb1¥ [JTAG]
[] Target Device iz part of a JTAG chain

— —
))

i. Single JTAG Device
If the programmer is only connected to ONE JTAG device, then you can leave all the settings as their
default value of ‘0’. This means the Target Device is the first and only device in the JTAG Chain.

ii. Device is part of a JTAG Chain

If the Target Device to be programmed is connected so it is part of a JTAG chain, then it is necessary
to specify the number of ‘JTAG devices’ and ‘Instruction Bits’ both BEFORE and AFTER the
Target Device in the Chain — see example JTAG Chain below.

3.6.3 JTAG Chain — Devices BEFORE / AFTER parameters

In order to program the Target JTAG Device, the programmer needs to know the physical position of
the Target Device in the JTAG Chain.

¢ Inthe ‘Devices BEFORE’ field, enter the number of JTAG devices BEFORE the Target
Device in the JTAG Chain. If the Target device is the first device in the chain, enter ‘0.

¢ Inthe ‘Devices AFTER’ field, enter the number of JTAG devices AFTER the Target Device in
the JTAG Chain. If the Target device is the last device in the chain, enter ‘0’.

Example:

If you are trying to program ‘JTAG Device 2’ in the JTAG Chain of 3 devices, then there is 1 device
before and 1 device after the Target Device.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 39

ive Application Note

The Embedded Solutions Company

3.6.4 JTAG Chain — Instruction Bits BEFORE / AFTER parameters

In order to program the Target Device, the programmer needs to know the total number of JTAG
‘Instruction Register’ bits contained in the JTAG devices BEFORE and AFTER the Target Device.
The programmer then pads all outgoing bit streams with the relevant numbers of dummy bits so only
the Target Device is actually accessed / programmed.

e You can find the ‘JTAG Instruction Register’ width (number of bits) in the manufacturer’s
datasheet for each JTAG device you are looking to program in the chain.

e All Atmel ATmega AVR microcontrollers have a ‘JTAG Instruction Register’ width of 4 bits.

e All Atmel ATFxxxx CPLD’s have an instruction width of 8 bits.

3.6.5 Calculating the ‘Bits Before’ value

To calculate the ‘Bits Before’value:
e Find out the ‘UTAG Instruction Register’ width (number of bits) in the manufacturers
datasheet for each JTAG device you are looking to program in the chain.
e Add together all the ‘JTAG Instruction Register’ widths for JTAG devices BEFORE the
Target Device
e Enter this value in the ‘Bits BEFORE’ field

Example:
e In our example JTAG Chain with 3 AVR devices, each AVR device will have a JTAG
Instruction Register’ width of 4 bits.
e If you are trying to program ‘JTAG Device 2’in the JTAG Chain of 3 devices, then there is 1
AVR device before Device 2 so the ‘Bits BEFORE’ field should be set to 4.

3.6.6 Calculating the ‘Bits After’ value

To calculate the ‘Bits After’ value:
e Find out the ‘UTAG Instruction Register’ width (number of bits) in the manufacturers
datasheet for each JTAG device you are looking to program in the chain.
e Add together all the ‘JTAG Instruction Register’ widths for JTAG devices AFTER the Target
Device
e Enter this value in the ‘Bits AFTER’ field

Example:
e In our example JTAG Chain with 3 AVR devices, each AVR device will have a JTAG
Instruction Register’ width of 4 bits.
e If you are trying to program ‘JTAG Device 2’ in the JTAG Chain of 3 devices, then there is 1
AVR device after Device 2 so the ‘Bits After’ field should be set to 4.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 40

@uinox Appl icatiﬂl‘l

The Embedded Solutions Company

3.6.7 Summary of the JTAG Chain settings

Here are the settings to program ’Device 2’ in the 3 device JTAG chain:

JTAG Daisy Chain Mode - supported by ATmegaZ2b61V [JTAG]
Target Device iz part of a JTAG chain

Devices Before: Instruction bits before

14 13
Devices After: |nztruction bitz after
14 13

e There is one AVR device BEFORE ‘Device 2’ and one AFTER it.
e Every AVR device has an ‘JTAG Instruction Register width’ of 4 bits, so there are ‘4 bits
before’ and ‘4 bits after’ the target device - ‘Device 2°.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 41

ive Application Note

The Embedded Solutions Company

3.7 Testing JTAG communication with the Target Chip

To make sure that the programmer can communicate to the Target JTAG device, try reading back the
Device Signature as follows:
e Select the <FLASH> tab
e Locate the <Check Sig> button on the right-hand side of the screen and click it.
- The programmer will now try to communicate with the Target Chip via the JTAG Interface
- If the Target Chip responds correctly, then EDS will report ‘Signature Read: Pass’.

Information E

- Operation: Signature Check
1 Result: PASS
Signature Read = Ox1E9802

- If the Target Chip does not respond, then EDS will report either:

i. Cannot enter programming mode
If you receive this error, please check the following:
e The JTAG connections between the programmer and the Target System are correct.
e There is definitely power applied to the Target System and to all the JTAG devices if the
Target Device is part of a JTAG chain.
e The UTAG Chain’ settings are correct for the Target Device being programmed.
e Try slowing down the JTAG Frequency’ and then try to check the Device Signature again.

ii. ‘Signature Read: Fail’.

Operation: Signature Check
Result: FAIL

Error: Incorrect Signature - Read: 0x000000, Expected: 0x1E9802
Error 3044 - Failed to Enter Programming Mode, tried 3 times!

If you receive this error, please check the following:

e Make sure there are no series resistors in-line with any of the JTAG signal lines

e Make sure there are no capacitors on any of the JTAG signal lines

e Make sure the total length of the JTAG ISP cabling is no more than 200 cm

e The JTAG Chain’ settings are correct for the Target Device being programmed.

e Try slowing down the ‘JTAG Frequency’ and then try to check the Device Signature again.

e If the Signature looks like a valid signature, make sure that you have selected the correct
JTAG Device in the chain. It is possible that the programmer is actually communicating with a
different device by mistake and hence reading the wrong signature.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family ~ 42

ive Application Note

The Embedded Solutions Company

3.8 Programming the FLASH Area

These instructions describe how to program the contents of a file into the FLASH area of the Target
Device:

e Select the <FLASH> tab

e If you have not already selected a data file to program, click the ‘Edit buffer’ check box and
then click the <Load> button to select a suitable Binary of Intel Hex file.

e The contents of the specified file should now be displayed in the Buffer Window.

e Click the <Write> button

Write Block to Flash 3]

Electronic Chip Eraze
Uze file start and end addresses

Remove preceeding '0xFF'

Remove tralling '0xFF'

L ox || canca |

e EDS will automatically perform a Chip Erase by default which will erase the entire FLASH
before programming any data into it.

e Select the address range you wish to program.

e EDS will automatically use the ‘Start’ and ‘End’ address of the FLASH input file unless
otherwise specified. This reduces the total data actually programmed to the number of bytes in
the input file rounded to the end of the nearest FLASH Page.

e If you want to program the entire FLASH range, click the <Entire Device> button.

e Click <OK> to program the FLASH of the Target Chip.

e The programmer should now start to program the chip.

e The BUSY LED will illuminate on the programmer.

e The programmer will program the contents of the Buffer Window into the FLASH area of the
Target Device.

e Each block of data is programmed and then verified so if a failure occurs it will be notified
immediately.

e To verify that the data has been programmed correctly, click the <Verify> button.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 43

ive Application Note

The Embedded Solutions Company

3.9 Programming the EEPROM Area

These instructions describe how to program the contents of a file into the EEPROM area of the Target
Device.

Important note:
In JTAG ISP mode, an EEPROM location must contain O0xFF before it can be programmed to any
other value. This requires a ‘Chip Erase’ operation to clear all locations to the value OxFF.

To program the EEPROM area:
e Select the <EEPROM> tab
e |f you have not already selected a data file to program, click the ‘Edit buffer’ check box and
then click the <Load> button to select a suitable Binary of Intel Hex file.
e The contents of the specified file should now be displayed in the Buffer Window.
* Click the <Write> button

Write Block to EEPROM X
Use file start and end addresses
Femove preceeding '0:FF'

Femove trailing '0<FF*

[ok [cancel |

e Select the address range you wish to program

e EDS will automatically use the ‘Start’ and ‘End’ address of the EEPROM input file unless
otherwise specified. This reduces the total data actually programmed to the number of bytes in
the input file rounded to the end of the nearest EEPROM Page.

e If you want to program the entire EEPROM range, click the <Entire Device> button.

e The EEPROM address range which you are trying to program must contain OxFF otherwise
the programmer will be unable to program the bytes.

e Click <OK> to program the EEPROM of the Target Chip.

e The programmer should now start to program the chip.

e The BUSY LED will illuminate on the programmer.

e The programmer will program the contents of the Buffer Window into the EEPROM area of the
Target Device.

e The EEPROM data is programmed in pages of either 4 or 8 bytes and then verified so if a
failure occurs it will be notified immediately.

If EDS reports an ‘EEPROM programming error’, please check the following:

e Make sure that address range in the EEPROM which is being programmed contains the value
OxFF before the programming operation is started.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 44

ive Application Note

e This may require a Chip Erase operation to be performed because in JTAG Mode an
EEPROM Page does NOT get automatically erased during a program operation.

e To Erase the EEPROM area to value OxFF, you may need to set the ‘EESAVE’ fuse to a ‘1’
and then perform a Chip Erase operation.

3.10 Erasing the FLASH / EEPROM area

It is possible to erase the FLASH and / or EEPROM area of a Target Device by clicking the <Erase>
button. This will also erase the Security Lock Bits changing all the Lock Bit values from ‘0’ to ‘1’. The
Configuration Fuses are not affected by a Chip Erase operation.

3.10.1 Erasing the FLASH area

The only way to erase the FLASH area of the Target Device is to use the ‘Chip Erase’ command:

e Select the <FLASH> tab

e C(Click the <Erase> button

e This will send the ‘Chip Erase’ command to the Target Device.

e The Target Device will then erase the FLASH (and EEPROM as long as the EESAVE flag is
not set to 0)

e To confirm that the FLASH / EEPROM is definitely blank, you can choose to perform a Blank
Check operation.

3.10.2 Erasing the EEPROM area — special considerations

The only way to erase the EEPROM area of the Target Device in JTAG mode is to use the ‘Chip
Erase’ command:
e Select the <EEPROM-> tab
e Click the <Erase> button
e This will send the ‘Chip Erase’ command to the Target Device.
e The Target Device will then automatically erase the FLASH followed by the EEPROM areas.
e The EEPROM area will only be erased if the EESAVE flag is set to ‘1°.
e To confirm that the FLASH / EEPROM is definitely blank, you can choose to perform a Blank
Check operation.
e |f the EEPROM is still not blank after the Erase Operation, check that the EESAVE fuse is
definitely set to ‘1’

Important note:

In JTAG ISP mode only, it is not possible for the programmer to write any bit of EEPROM from a ‘1’
to a ‘0’. This means that each EEPROM location must contain OxFF before it can be programmed to
any other value. This requires a Chip Erase operation to clear all locations to the value 0xFF.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 45

€QUINOX

The Embedded Solutions Company

Application Note

3.11 Programming the Configuration Fuses
3.11.1 Overview

The Configuration Fuses of an Atmel AVR device can be programmed / read using the <Fuses> tab.

Instructions:

e Select the <Fuses> tab
e [f this is a new EDS project, then the Fuses will be disabled.
e Check the ‘Program Post-Erase Fuse Bits’ box - the Fuses can now be programmed

Program ferify

Fuses
CKSELD
CKSEL1
CKSELZ
CKSEL3
SUTO
SUTH
CkouT
CKDMG
BOOTRST
BOOTSZ0
BOOTSAN
EESANE
WhOTOM
SPIEM

€ JTAGEN
OCDEM
BODLEYELD
BODLEVELT
BODLEVELZ

£

e The values of the Fuses which could be programmed into the Target Chip are shown in the

Owerview | Programmer and Device || Target Dzcillator
Program Post-Eraze Fuse Bits

Fuse Programming Action:

[Read fram Fuse file.

PC Fuze State

0 - PROGRAMMED

1 - UNPROGRAMMED
0 - PROGRAMMED

0 - PROGRAMMED

0 - PROGRAMMED

1 - UNPROGRAMMED
1 - UNPROGRAMMED
0 - PROGRAMMED

1 - UNPROGRAMMED
0 - PROGRAMMED

0 - PROGRAMMED

1 - UNPROGRAMMED
1 - UNPROGRAMMED
0 - PROGRAMMED

0 - PROGRAMMED

1 - UNPROGRAMMED
1 - UNPROGRAMMED
1 - UNPROGRAMMED
1 - UNPROGRAMMED

Fuse Yalues: 0x62,0=239,0:07

Target Fuze State

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

JTAG Settings

Target Power Supply | Flazh

Dezcription

Clock Select 0

Clock Select 1

Clock Select 2

Clock Select 3

Select Dzcillator Start Up Time O
Select Ozcillator Start Up Time 1
Clack Output Enable

Divide Clock by 8

RESET “ector

Boot Size [

Boot Size 1

Prezerve EEPROM during ERASE -
Watchdog Timer abways OM

5P| Programming EMABLE [0=EMAE
JTAG Programming EMABLE [O=E M,
On-Chip Debug [OCD) - EMAELE
Brown-out Detectar Trigger Level 0
Brown-out Detectar Trigger Level 0
Brown-out Detectar Trigger Level 2

Eeprom Fuses

Security

PC Fuzes:

Set Default

Edit Value. ..

Irnpaort...

Expaort...

Target Fuzes:

¥ Bead

WP wirite

-1' Werify

<< Copy

‘PC Fuse State’ column. The initial Fuse values are the default Fuse values for a virgin chip.

e The ‘Target Fuse State’ column displays the current value of the Fuses of the actual Target

Device. They are initially set to “?” until the first read or write operation is performed.
e The Fuse Hex values are shown for the ‘PC Fuse State’ at the bottom of the screen.
e Ared X’ next to a fuse indicates a ‘Dangerous Fuse’. Programming one of these fuses

incorrectly could result in the chip no longer responding to the programmer.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family

46

ive Application Note

The Embedded Solutions Company

3.11.2 Reading the Fuses from a Target Device

To read the Fuse Values from a Target Device:
¢ Click the <Read> button
e The Hex values of the ‘Fuse Bytes’ which are read back are displayed as follows:

= Operation: FUSE Read
\y Result: PASS
Fuses Yalues Read: OxED, 0x9&, OxFD

e The Fuse values from the Target Device are now displayed in the ‘Target Fuse State’

column.
Overview | Programmer and Device | Target Oscillabor | JTAG Settings | Target Power Supply | Flash | Esprom | Fuses | Security
Program Post-Erase Fuse Bits PC Fuzes:
Fuze Programming Action:
- Set Default
Programerify v
[] Read from Fusze file. Edit Valus...
Impaort...
Fuzes PC Fusze State Target Fuze State Description Export...
CKSELD 0 - PROGRAMMED 1 - UNPROGRAMMED Clock Select 0
CKSELT 1-UNPROGRAMMED O - PROGRAMMED Clack Select 1 Target Fuges:
CKSELZ2 0 - PROGRAMMED 1 - UNPROGRAMMED Clock Select 2
CKSEL3 0 - PROGRAMMED 1 - UNPROGRAMMED Clock Select 3 % Head
SUTO 0 - PRDOGRAMMED 0 - PROGRAMMED Select Dgcillator Start Up Time 0 » wits
SuT1 1-UNPROGRAMMED 1 - UNPROGRAMMED Select Decillator Start Up Time 1 =
CkouT 1-UNPROGRAMMED 1 - UNPROGRAMMED Clock Output Enable P Veiy
CKDME 0 - PRDOGRAMMED 1 - UNPROGRAMMED Divide Clock by 8 -
BOOTRST 1-UNPROGRAMMED 0O - PROGRAMMED RESET %ector << Copy
BOOTSZ0 0 - PROGRAMMED 0 - PROGRAMMED Boot Size 0
BOOTSZT 0 - PRDOGRAMMED 0 - PROGRAMMED Boot Size 1
EES&VE 1-UNPROGRAMMED 1 - UNPROGRAMMED Preserve EEPROM during ERASE - ENABLE
WDTON 1-UNPROGRAMMED 1 - UNPROGRAMMED Watchdog Timer always OM
SPIEN 0 - PRDOGRAMMED 0 - PROGRAMMED SPI Programming EMABLE [0=EMABLED)
€ JTAGEN 0 - PROGRAMMED 0 - PROGRAMMED JTAG Programming ENABLE [0=ENABLED)
OCDEM 1-UNPROGRAMMED 1 - UNPROGRAMMED On-Chip Debug [OCD] - EMABLE
BODLEVELD 1 - UNPROGRAMMED 1 - UNPROGRAMMED Brown-out Detector Trigger Level 0
BODLEYELT 1 - UNPROGRAMMED 0 - PROGRAMMED Brown-out Detector Trigger Level 0
BODLEVELZ 1 - UNPROGRAMMED 1 - UNPROGRAMMED Brown-out Detector Trigger Lewvel 2
Fuse Values: 0x62,0039,0.07

3.11.3 Verifying the Fuses of a Target Device

To verify the Fuse Values in a Target Device with the Fuse Values in the ‘PC Fuse State’ column:
e Click the <Verify> button
e Any differences in the Fuse Values between the PC settings and the Target Device setting will
now be displayed.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 47

Application Note

3.11.4 Writing the Fuses into a Target Device

e To program the Fuses values in the ‘PC Fuse State’ column into the Target Device, click the
<Write> button

e |f there are any ‘Dangerous Fuses’ in the list, then the following warning will be displayed:

< The Fuse "JTAGEN'is a dangerous fuse.
‘_,_‘/ Setting this fuze to the wrang value could make the device so it cannat be programmed again in ISP mode.
' Please double-check that the value of the fuse is correct before programming it.
To go ahead and skip all 'dangerous fuse’ messages and program the fuses, press the [ALL] button.

Are you sure you want to program this fuse?

"' WARNING !'!! If you choose to program e.g. the JTAGEN Fuse to a ‘1’ (unprogrammed),

then the chip will no longer respond the JTAG ISP programming.

e C(Click <Yes> to allow programming of the selected Fuse

e Click <All> to skip all fuse warning messages and program all the fuses

e The programmer will now program all the fuses at the same time and then read them back and
verify them with the values in the ‘PC Fuse State’ column.

e The programmer will then report a PASS or FAIL for programming the Fuses.

— Operation: FUSE Write
\!}) Result: PASS
Fuse Bits have been programmedfverified Ok
Fuses Values Read Back: Owd2, 0x29, OxFF

—

3.11.5 Using a ‘Fuse File’ to import Fuse settings into a project

It is possible to export the ‘Fuse Values’ for a particular device to a so-called ‘Fuse File’ so that a
single copy of the fuses is stored in one place. This ‘Fuse File’ can then be shared amongst many
projects if required. See section 4 for further details about using ‘Fuse Files’ .

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 48

ive Application Note

The Embedded Solutions Company

3.12 Programming the Security Fuses
3.12.1 Overview

The Security Fuses of an Atmel AVR device can be programmed / read using the
<Security Fuses> tab.

Instructions:
e Select the <Security Fuses> tab
e [f thisis a new EDS project, then the Security Fuses will be disabled.
e Check the ‘Program Device Security Fuses’box - the Security Fuses can now be
programmed

Owerview | Programmer and Device | Target Oscillator | JTAG Settings | Target Power Supply || Flash | Eeprom | Fuses | Security

Program Device Security Fuses f Security Level PLC Fuzes:
Fusze Programming Action:
. Set Detault
Programverify W
[] Read from Fuse file. EditValue...
Irnpaort. .
Fuses PC Fuze State Target Fuze State Dezcription Export..
LB 1 - UNPROGRAMMED Lack Bit 1
LB2 1 - UNPREOGRAMMED Lack Bit 2 Target Fuzes:
BLEO1 1 - UNPROGRAMMED Boot Lock Bit 01
BLBOZ 1 - UNPROGRAMMED Boot Lock Bit 02 ¢ Read
BLE11 1 - UNPROGRAMMED Boot Lock Bit 11 » Wit
BLE12 1 - UNPROGRAMMED Boot Lock Bit 12 e
-1' Werify
“% Erase

i

<< Copy

Fuze Walues: 0=00

e The values of the Security Fuse values which could be programmed into the Target Chip are
shown in the ‘PC Fuse State’ column. The initial Fuse values are the default Fuse values for a
virgin chip which usually represents an ‘unlocked’ chip.

e The ‘Target Fuse State’ column displays the current value of the Fuses of the actual Target
Device. They are initially set to “?” until the first read or write operation is performed.

e The Fuse Hex values are shown for the ‘PC Fuse State’ at the bottom of the screen.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 49

€QUINOX

The Embedded Solutions Company

Application Note

3.12.2 Reading the Security Fuses from a Target Device

To read the Security Fuse Values from a Target Device:
e C(Click the <Read> button
e The Hex values of the ‘Fuse Bytes’ which are read back are displayed as follows:

Information

& Cperation: SECURITY Read
1 Result: PASS
Security Fuse Values Read: 0xFF

e The Security Fuse values from the Target Device are now displayed in the ‘Target Fuse State’

column.
Ovwerview | Programmer and Device | Target Oscillatar | JTAG Settings | Target Power Supply | Flazh || Eeprom | Fuses | Security
Program Device Security Fuges / Security Level PC Fuses:
Fuse Programming &ction;
. Set Default
Program ferify w
[Read fram Fuse file, Edit"/alue...
Irnpart...
Fuses PC Fuze State Target Fuze State Drezcription Expart...
LE1 1 - UNPROGRAMMED 1 - UNPROGRAMMED Lock Bit1
LB2 1 - UNPROGRAMMED 1 - UNPROGRAMMED Lock Bit 2 Target Fuses:
BLEO 1 - UNPROGRAMMED 1 - UNPRDGRAMMED Eoot Lock Bit 01 T
BLBOZ 1 - UNPROGRAMMED 1 - UNPROGRAMMED Eoot Lock Bit 02 % Read
BLE11 1 - UNPROGRAMMED 1 - UNPRDOGRAMMED Eoot Lock Bit 11 » wit
BLE1Z 1 - UNPROGRAMMED 1 - UNPROGRAMMED Eoot Lock Bit 12 s
-1' Werify
" Erase
<< Copp
Fuze Values: 0x3F

3.12.3 Verifying the Fuses of a Target Device

To verify the Security Fuse Values in a Target Device with the Fuse Values in the ‘PC Fuse State’

column:

e (Click the <Verify> button

e Any differences in the Fuse Values between the PC settings and the Target Device setting will
now be displayed.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 50

Application Note

The Embedded Solutions Company

3.12.4 Writing the Security Fuses into a Target Device

e To stop anyone from reading / copying the contents of an AVR device, it is usual practice to
‘Lock’ the device at the end of the programming sequence.

e Tolock the FLASH and EEPROM from being read back, set the ‘LB1’ and ‘LB2’ Lock Bits to
‘0.

e To program the Fuses values in the ‘PC Fuse State’ column into the Target Device, click the
<Write> button

Fuses PC Fuse State Target Fuze State Drescription
LE1 0 - PROGRAMMED ? Lock Bit 1
LB2 0 - PROGRAMMED ? Laock Bit 2
BLEOT 1 - UNPROGRAMMED 7 Baat Lock Bit 01
BLEOZ 1 - UNPROGRAMMED 7 Boot Lock Bit 02
BLE11 1 - UNPROGRAMMED 7 Boot Lock Bit 11
BLE1Z2 1 - UNPROGRAMMED 7 Boot Lock Bit 12

e The programmer will now program all the Security Fuses at the same time and then read them
back and verify them with the values in the ‘PC Fuse State’ column.

e The programmer will then report a PASS or FAIL for programming of the Security Fuses.

e The Target Device is now locked

Please note:
e Once the Lock Bits have been programmed on an AVR Device, it is then no longer possible to
read or re-program the FLASH or EEPROM memory areas.
e The Configuration Fuses and Security Fuses can usually still be read from a Target Device
even if the device is locked.

3.12.5 Erasing the Security Fuses

The only way to change a Security Fuse from a ‘0’ to a ‘1’ is to perform a ‘Chip Erase’ operation.
This will erase the FLASH / EEPROM and then finally erase the Security Fuses and set them back to
a value of ‘1"

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 51

Application Note

€QUINOX

The Embedded Solutions Company

3.13 Internal Oscillator Calibration — Factory OSCAL Byte
3.13.1 Overview

Every Atmel AVR microcontroller features an ‘Internal RC Oscillator’ which provides a clock source
for the device when no external clock is present. This oscillator has been ‘factory calibrated’ by
Atmel and the so-called ‘OSCAL Factory Calibration Byte’ can be found in the ‘Signature Row’ of
the AVR device. With older AVR devices, the external programmer must read this OSCAL byte from
the ‘Signature Row’ and then write it into either the FLASH or EEPROM of the target device. It is
then the responsibility of the customer’s firmware application to transfer the byte from FLASH /
EEPROM into the AVR OSCAL register when the firmware runs. This forces the ‘Internal RC
Oscillator’ to run at the factory calibrated frequency.

3.13.2 Reading / writing the Oscillator Calibration Byte in EDS mode

It is possible to read back the value of the 'OSCAL Factory Calibration Byte’ for each of the
available internal oscillators using EDS — Development Mode.

Instructions:
e Launch your project in EDS
e Select the <Target Oscillators> tab
e C(Click the ‘Internal RC Oscillator’ radio button — see screenshot below

Owerview | Programmer | Target Device | Target Dscillator | JTAG Settings | Target Power Supply | Flash || Eeprom || Fus:

) External Dscillator

{+) Internal RC Dscillator

Programmer OP4 Clock

Internal Dzcillatar Frequency
1.000000 kHz

Dzcillator Frequency: Wirite Calibration Bute to:

0OF4 Clock Frequency
1.8432 MHz L

Toenable OP4 Clock, zelect

kir 'SCKZ_IM' followed by 'SCKZ2_EMN'
0.0H=) Flash O Eeprom in Pre-Program State b achine
i Addrezs 0 Addreszs 1:
M 0x1FFFE 0x1FFFF
16.0 MHz

[Fead Calibration Bute l

e Toread the ‘'OSCAL Factory Calibration Byte’ for the selected ‘Internal Oscillator’, click

the <Read Calibration Byte> button.

- The 'OSCAL Factory Calibration Byte’ is displayed.

Information .

i

Operation: Read Osdllator Calibration
Result: PASS
Read: 0x59

Diagnostic Info ==

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 52

ive Application Note

The Embedded Solutions Company

e To set the project up to program the "OSCAL Factory Calibration Byte’ into the FLASH or

EEPROM
e Tick the ‘Write Calibration Byte to’

Wirite Calibration Bute to:

(¥} Flash () Eeprom
Address O Address 1:
0:1FFFE 0:1FFFF

[Read Calibration Byte]

e Select the FLASH or EEPROM area as required

e Enter the address to program the byte into

e When programming the byte into FLASH, the programmer will actually program the byte twice
into a WORD.

e C(Click the <Read Calibration Byte> button.

- The read 'OSCAL Factory Calibration Byte’ is displayed.

Information

. Operation: Read Osdllator Calibration
\14) Result: PASS
Read: 0x523

Would you like to write this Calibration byte back to Flash location 0x 1FFFE and 0x1FFFF now?

¢ You can now choose <Yes> to program the ‘'OSCAL Factory Calibration Byte’ back into the
specified address in FLASH or EEPROM.

Information E

2 Operation: Calibration Byte FLASH Write
\1) Result: PASS

Written 0x59 to: 0x1FFFE and Ox 1FFFF

Diagnostic Info ==

e (Click <OK>

e The 'OSCAL Factory Calibration Byte’ is now programmed into addresses 0x1FFFE and
0x1FFFF of the FLASH area.

e This can be confirmed by reading back the FLASH area and it shows the two copies of the
byte in the top two bytes.

0x1FFF0: FFFF FF FF FF FF FF FF FF FF FF FF FE FEJ59 59

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 53

Application Note

3.13.3 Writing the Oscillator Calibration Byte in STANDALONE mode

It is possible to get the programmer to automatically read the 'OSCAL Factory Calibration Byte’ and
program it into a specified location in FLASH or EEPROM using a Standalone Project. This is ideal for
production environments where the programmer is used without a PC.

Instructions:

e Follow the instructions in the previous section to set up the address into which the "'OSCAL
Factory Calibration Byte’ is to be programmed.

e Make sure that your FLASH or EEPROM data files to not also write data to the same location
where the 'OSCAL Factory Calibration Byte’ is to be programmed

e Compile the project and upload it to the programmer.

e When the project is executed, it will perform the other actions specified in the project and then
automatically read the 'OSCAL Factory Calibration Byte’ and write it into the specified
address in FLASH or EEPROM.

3.14 Exporting an EDS Project to a Standalone Project

Once you have fully tested your EDS Development Project, it is possible to add the project to a
Project Collection and then upload it to a programmer as a so-called ‘Standalone Project’. The
project can then be executed on a programmer without requiring any form of PC control.

Please follow the instructions detailed in Section 6 to upload your EDS project to a programmer.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family ~ 54

ive Application Note

The Embedded Solutions Company

4.0 Exporting / Importing Fuse Settings to /
from an Equinox Fuse File

4.1 Overview

One of the new powerful features of EQTools is the ability to export the ‘Fuse Settings’ for a
Programming Project to a Fuse File (*.eff). This allows the settings for all the fuses to be contained in
one Fuse File which can then be imported into any of the Fuse tabs in Project Manager or in the
<Fuses> tab in EDS. In this way, the values of all the Fuses for a particular project can be shared
with other projects. This helps to ensure that the correct fuse values are specified in all projects.

4.2 Exporting the Fuse Settings to a Fuse File

To export the settings of the ‘Local Fuses’ column to a fuse File:
e Select the EDS <Fuses> Tab
e Set up the ‘Local Fuses’to the correct values for your Target Device.
e C(Click the <Export> button - a file browser is displayed.
e Enter a suitable name for your Fuse File eg. project_fuses.eff
e C(Click <Save> > The ‘Local Fuses’ column is transferred to your specified Fuse File (*.eff).

4.3 Copying the Fuses from a Target Device

To copy the Fuses from the Target Device to a Fuse File:

e Select the EDS <Fuses> Tab

e (lick the <Read> button
- the Fuses are read from the Target Device and are then displayed in the ‘Target State’
column.

e (lick the <<Copy button
- the Fuse settings read from the Target Device are copied into the ‘Local State’fuse
column.

e Click the <Exports button - a file browser is displayed.

e Enter a suitable name for your Fuse File eg. project_fuses.eff

e C(Click <Save> > The ‘Local Fuses’ column is transferred to your specified Fuse File (*.eff).

4.4 Importing the Fuse Settings from a Fuse File

To import the settings of the ‘Local Fuses’ column from a Fuse File:
e Select the EDS <Fuses> Tab
e C(Click the <Imports button - a file browser appears
e Browse to and select your Fuse File (*.eff)
- The Fuse settings are then automatically copied from the Fuse File to the ‘Local Fuses’
column.
e To program these settings into a Target Device, click <Writes.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 55

Ptne Application Note

The Embedded Solutions Company

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 56

ive Application Note

The Embedded Solutions Company

5.0 Importing Fuse Settings in HEX format
from AVR Studio

5.1 Overview

If the original firmware for your project has been developed using the Atmel ‘AVR Studio’ software,
then it is likely that both the AVR ‘Configuration Fuse settings’ and the ‘Security Fuse Settings’
are defined as so-called ‘Hex Fuse Bytes’. This is the raw version of the fuses where each ‘Hex
Fuse Byte’ can represent up to 8 individual ‘Boolean Fuses’. It is possible to import the ‘Hex Fuse
Bytes’ from AVR Studio into an EQTools project by following the instructions in the next section.

5.2 Finding the AVR Studio ‘Hex Fuse Values’

In the Atmel ‘AVR Studio’ software, the ‘Configuration Fuse settings’ for your project are displayed
on the <Fuses> tab — see screenshot below.

. JTAGICE mkll in JTAG mode with ATmegal 69

tdain] Program Fuses lLockBits] Advanced] Hwd Settings] HWInfo] Auta]

BODLEVEL [Brown-out Detection Disabled -
RSTDISBL]
OCDEM]
JTAGEN [v]
SPIEM]
WDTON [v]
EES&VE]
BOOTSZ Boot Flash size=1024 words start address=$1C00 -
BOOTRST]
CKDIME [v]
CKOUT]
SUT_CKSEL Int. AC Dsc.; Start-up time: & CE + Omz -
EXTENDED 0=FF
HIGH 0=43
Lo 0=42
IV Auto read
¥ Smart warnings
¥ “erify after programrming Program Wity | Fead |
Entering pragrarmming maode.. O] ~

Wiriting fuses (low to high).. 0x42. OxA9, 0xFF . OKI

Reading fuges [low to high].. D242, 043, 04FF .. OKI

Fuse bits werification.. QK

Leaving programming mode.. OF! »

The ‘AVR Studio’ software displays a high-level overview of the fuses, grouping similar fuses
together with more meaningful group names eg. ‘BODELEVEL’ is made up of two fuses:
BODLEVELO and BODLEV1 and the fuse ‘SUT_CKSEL’ actually represents the following six
Boolean fuses: SUTO, SUT1, CKSELO, CKSEL1, CKSEL2, CKSELS.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 57

Application Note

These Fuse values are then converted by AVR Studio into ’Hex Fuse Bytes’. For AVR
microcontrollers, the ‘Hex Fuse Bytes’ are called ‘LOW’, ‘HIGH’ and ‘EXTENDED’ — see
screenshot from AVR Studio above.

In this example, the ‘Hex Fuse Bytes’ are as follows:
EXTENDED: 0xFF
HIGH: 0xA9
LOW: 0x42

5.3 Importing the AVR Studio ‘Hex Fuse Values’ into EQTools

It is possible to import the AVR ‘Hex Fuse Bytes’ from AVR Studio into EQTools. This functionality
requires that EQTools build 927 or above is installed.

Instructions:

1. Launch your project in EDS (Development Mode)
- Launch your project in EDS (Development Mode) and then select the <Fusess tab.

Overview | Programmer | Target Device | Target Dscilator | SPI Settings | Target Power Supply | Flash || Eeprom | Fuses | Security
Program Post-Eraze Fuse Bits PC Fuses:
Fuse Programming Action:
Programerify --» RESET ~
1 Read from Fusze file. Enter Hex..
Impart...
Fuzes PC Fuze State Target Fuze State D escription Export...
€3 CKSELD 0 - PROGRAMMED ? Clock Select 0
€3 CKSELT 1-UNPROGRAMMED 7 Clock Select 1 Target Fuszes:
€3 Ck3EL2 0 - PROGRAMMED ? Clock Select 2
€3 CKSELS 0-PROGRAMMED 7 Clock Select 3 < dewd
SUTO 0 - PROGRAMMED ? Select Ozcillator Start Up Time 0 » wis
sUTH 1 - UNPROGRAMMED 7 Select Ozcillator Start Up Time 1 —
CLouT 1-UNPROGRAMMED 7 Clock Output P Verly
CKDIVE 0 - PROGRAMMED ? Divide Clock by & =
BOOTRST 1-UNMPROGRAMMED 7 RESET Wectar << Copy
BOOTSZ0 0 - PROGRAMMED ? Boot Size 0
BOOTSZ1 0 - PROGRAMMED ? Boot Size 1
EESAVE 1-UNMPROGRAMMED 7 Preserve EEPROM during ERASE - EMA...
WOTON 1-UNPROGRAMMED 7 W atehdog Timer - Always ON
€ SPIEN 0 - PROGRAMMED ? SPI Programming EMAELE
€ JTAGEN 0 - PROGRAMMED ? JTAG Port - ENABLE
OCDEN 1-UNPROGRAMMED 7 On-Chip Debug [OCD) - EMABLE
BODLEVELD 1 - UNPROGRAMMED 7 Brown-out Detectar Trigger Level 0
BODLEVELT 1 - UNPROGRAMMED 7 Brown-out Detector Trigger Level 1
BODLEVELZ 1 - UNPROGRAMMED 7 Brown-out Detector Trigger Lewvel 2
Local Fuze Values: 0252,0.93,04FF

e The default ‘library’ settings for the Fuses are displayed in the ‘PC Fuse State’ column. These
fuse values represent a virgin AVR device which has never been programmed before.

e The ‘Local Fuse Values’in Hex format are displayed at the bottom of the window. These
values represent the current settings of the fuses in the ‘PC Fuse State’ column.

e The ‘Local Fuse Values’ are displayed in the following order: LOW, HIGH, EXTENDED

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 58

€QUINOX

The Embedded Solutions Company

Application Note

2. Click the <Enter Hex> button

e The ‘Enter Fuse Values’ dialog box is displayed:

Enter Fuse Values E

Enter the Hex value for each Fuze Byte

Fuze Byte LOW:
064

Fuze Byte HIGH:
0x39

Fuze Byte Extended:
0xFF

Click <0K> to convert theze Fuse Hex walues to
Boolean Fuse Yalues

I oK l[Cancel]

e The Hex values displayed as default are the values corresponding to the default Fuse Settings

already specified in EQTools.

e Enter the ‘Hex Fuse Bytes’ from AVR Studio in the relevant Fuse Value fields: LOW, HIGH,
EXTENDED. These fields correspond to the same fuse field values in AVR Studio — see

example below.

From AVR Studio — Fuses tab:

Enter into EQTools — Enter Hex values.....

Main] Program Fuses lLDckEits] .ﬂ.dvanced] Hinf Settingsl HWInfo] Auto]

Enter the Hex walue for each Fuse Bute

Fuse Bute LOW:
Oxd2

Fusze Bute HIGH:
Qi3

Fusge Bute Extended:
0«FF

Click <0 to canvert these Fuze Hex values ta
Boolean Fuze Walues

BODLEVEL |Brown-out Detection Disabled
RSTDISEL |:|

[CDEN |:|

JTAGEN E|

SPIEN D

WOTON E|

EESAVE |:|

BOOTSE Boot Flash size=1024 words start address=$1C00
BOOTRST |:|

CKONE E|

CkouT

SUT_CKSEL It RC Oze.; Start-up time: B CK + Omg
EXTEMDED (kFF

HIGH (k43

LOW (nd2

In this example, ‘Hex Fuse Bytes’ are as
follows:

EXTENDED: 0xFF

HIGH: 0xA9

LOW: 0x42

(] l [Cancel

e Click the <OK> button to accept the Fuse
values

e EQTools will then convert these bytes into
the Individual Boolean Fuse values.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 59

Application Note

Information E]

= Action: Convert Hex Fuse Values
\y Result: PASS

The Hex Fuse values entered have been converted to show the Boolean Fuse Values (individual Fuses
Bits) - see the 'Fuses' column. If an unspecified bit is set this will be ignored.

Please check that these values correspond with the datasheet for the Target Device.

- The Hex values which you entered are now converted to the corresponding individual Boolean
fuses for each Fuse Byte.

Fuses PC Fuze State Target Fuze State Description
CESELD 0 - PROGRAMMED Clack Select 0
CESELT 1- UNPROGRAMMED Clock Select 1
CESEL2 0 - PROGRAMMED Clock Select 2
CKSEL3 0 - PROGRAMMED Clock Select 3
SUTO 0 - PROGRAMMED Select Ozcillator Start Up Time 0
SUTH 0 - PROGRAMMED Select Ozcillator Start Up Time 1
crouT 1 - UNPROGRAMMED Clock Output
CKDIvE 0 - PROGRAMMED Divide Clack by 8
BOOTRST 1- UNPROGRAMMED RESET Wectar
BOOTSZ0 0 - PROGRAMMED Boot Size 0
BOOTSZT 0 - PROGRAMMED Boot Size 1
EES&VE 1- UNPROGRAMMED Preserve EEPROM during ERASE - EMABLE
WhDTOM 0 - PROGRAMMED Wwiatchdag Timer - Always ON

€2 SPIEN 1 - UNPROGRAMMED SPI Programming EMNAELE

€ JTAGEN 0 - PROGRAMMED JTAG Port - ENABLE
OCDEN 1- UNPROGRAMMED On-Chip Debug (OCD) - EMABLE
BODLEVELD 1 - UNPROGRAMMED Brown-out Detector Trigger Level O
BODLEYELT 1 - UNPROGRAMMED Brown-out Detector Trigger Level 1
BODLEYELZ 1 - UNPROGRAMMED Brown-out Detector Trigger Level 2

Local Fuse Values: 0x42,0489,0xFF

e The ‘Local Fuse Values’represent the ‘Hex Fuse Values’ and they should have the same
values as the Fuse Bytes specified in the ‘AVR Studio’ project.

3. Export the ‘PC State Fuses’ to a Fuse File
It is possible to export these Fuse Settings to a ‘Fuse File’ as follows:
e (Click the <Exports button
e Save the fuse settings with a suitable name e.g. ATmega169_JTAG_Fuses.eff

4. Read the fuses from the Fuse file
e Once you have exported the Fuse Settings to a Fuse File, you can then include these Fuse
Settings in any project.
e |n EDS, on the <Fuses> tab, tick the ‘Read from Fuse File’ check box and then browse to
and select your Fuse File.

Fead from Fuse file.
C:hbemphEDS_Documentationta T megal 63_Fuses EFF

Browse...

e The project will then automatically use the Fuse Settings in the specified Fuse File.
e The Fuse File can also be used by any other project allowing the fuse values to be shared
between many projects if required.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 60

Ptne Application Note

The Embedded Solutions Company

5.4 Importing the AVR Studio ‘Hex Security Fuse Values’ into
EQTools

In AVR Studio, the ‘Security Fuse settings’for your project are displayed on the <Lock Bits> tab
and will be defined as one or more ‘Hex Security / Lock Bytes’. This is the raw version of the fuses
where each ‘Hex Security Fuse Byte’ can represent up to 8 individual ‘Boolean Fuses’.

It is possible to import the AVR ‘Hex Security Fuse Bytes’ from AVR Studio into EQTools. This
functionality requires that EQTools build 927 or above is installed.

1. Launch your project in EDS (Development Mode)
e Launch your project in EDS (Development Mode) and then select the <Securitys tab.

Overview | Programmer | Target Device | Target Oscilator | JTAG Settings | Target Power Supply | Flash | Eeprom | Fuses | Security

Program Device Secunity Fuses / Security Level PC Fuses:
Fuze Programming Action:
Programerify v i i
1 Read from Fuse file. Enter Hes...
Impart. ..
Fuses PC Fuse State Target Fuse State Description Export...
LEB1 1 - UNPROGRAMMED Lock Bit 1
LBZ2 1 - UNPROGRAMMED Lock Bit 2 Target Fuses:
BLEO 1 - UNPROGRAMMED Boot Lock Bit 01
BLED2 1 - UNPROGRAMMED Baot Lack Bit 02 ¥ fead
BLE11 1 - UNPROGRAMMED Boot Lock Bit 11 » wi
BLE1Z 1 - UNPROGRAMMED Boot Lock Eit 12 e
-1' Werify
“% Eigse
<« Copy
Local Fuse Valuss: 0xFF Target Fuses : 79777

The default ‘library’ settings for the Fuses are displayed in the ‘PC Fuse State’ column.
These fuse values represent a virgin AVR device which has never been programmed before
which should be “unlocked” ie all Lock Bits are set to “1°.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 61

ive Application Note

The Embedded Solutions Company

2. Click the <Enter Hex> button
e The ‘Enter Fuse Values’ dialog box is displayed:

Enter Fuse Values E]

Enter the Hex value for each Fuze Byte

Security Byte 0
0xFF

Click <0K> to convert these Fuse Hex values to
Boolean Fusze Values

I oK l[Cancel]

e The value(s) displayed as default are the values corresponding to the individual Boolean Fuse
Settings already specified in EQTools.

e Enter the ‘Security Hex Fuse Byte(s)’ from AVR Studio in the relevant Fuse Value field(s).

e (lick <OK> to convert the Hex value(s) to Boolean fuses.

Action: Convert Hex Fuse Values
\}4) Result: PASS

The Hex Fuse values entered have been converted to show the Boolean Fuse Values (individual Fuses

Bits) - see the 'Fuses' column.

Ok

e C(Click <OK> - the individual Boolean Security fuses are now displayed:

Owerview | Programmer | Tanget Device | Target Oscillator | JTAG Settings | Target Power Supply | Flash | Esprom | Fuses | Security
Program Device Security Fuses / Security Level PC Fuzes:

Fuze Programming Action:

L

- Set Default
Program/erify “

] Read fram Fuse file.

__boot. |

Impoart...
Fuzes PC Fusze State Target Fuze State D ezcription Export...
LE1 0 - PROGRAMMED Lock Bit 1
LBZ 0 - PROGRAMMED Lock Bit 2 Target Fuses:
BLEO 1 - UNPROGRAMMED Bioot Lock Bit 01
BLED2 1- UNPROGRAMMED Boot Lack Bit 02 ¥ Head
BLET1 1 - UNPROGRAMMED Boot Lock Bit 11 » wit
ELE1Z 1 - UNPROGRAMMED Boat Lack Bit 12 s
P Verily
e Erase
<< Copy
Local Fuse Values: 0xFC Target Fuses : 77777

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 62

Ptne Application Note

The Embedded Solutions Company

3. Export Security Fuses to a Fuse File
e Click <Export> and then save the Security Fuses to a Fuse File called
eg. ATmega169_Security.eff.
e This file can then be automatically read back into your programming project by selecting
‘Read from Fuse File’ and then specifying the relevant Fuse File.

4. Reading the Security Fuses from a Fuse file
e Once you have exported the Security Fuse Settings to a Fuse File, you can then include
these Fuse Settings in any project.
e In EDS, on the <Security> tab, tick the ‘Read from Fuse File’ check box and then browse to

and select your Fuse File.

Read fram Fuze file.

C:termphAT megal BAWAT megalB3_Securnity Fuzes EFF

e The project will then automatically use the Fuse Settings in the specified Fuse File.
e The ‘Security Fuse File’ can also be used by any other project allowing the fuse values to be
shared between many projects if required.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 63

Ptne Application Note

The Embedded Solutions Company

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 64

Ptne Application Note

The Embedded Solutions Company

6.0 Creating a Standalone Programming
Project

6.1 Overview

Once you have tested your project fully in EDS (Development Mode), it is possible to then make this
project into a ‘Standalone Project’ which can be uploaded to a programmer. This single standalone
project file (*.prj) will contain all the information required to program the Target Device including
FLASH file, EEPROM file, Fuse settings, Security Settings etc.

6.2 Creating a Standalone Project from EDS (Development Mode)

In EDS (Development Mode), select the <Overviews tab

Ovwerviewt | Programmer | Target Device | Target Oscillator | JTAG Settings | Target Power Supply | Flash | Eeprom || Fuzes || Security

Project Informatian:

3
1olar -

= Open / Modify Baze Programming Project

Add Project file to a new Project Collection

o A

%‘u} Lpdate this project in an existing Project Collection

C:htemphA T meaa2B6hA T mega2BB0- TAG. PP

Project Mame: Authar:
Project Wersion: Creation Date
1.0.0.0 19/05/2008 w

Please note: To upload thiz project to a programmer, please either add the project to
an exizting Project Collection or create a new Project Collection.

e [f this is the first time the EDS Project has been uploaded to a programmer, click the
<Add Project File to a new Project Collection> button.

e If the EDS Project has already been uploaded to a programmer before, click the
<Update this project in an existing Project Collection> button.

6.3 Add Project File to a new Project Collection

When the <Add Project File to a new Project Collection> button is pressed, the EDS project will be
automatically added to a new ‘Project Collection’.
e The EDS Project will appear in a ‘Project Manager’ window.
¢ You will then be prompted to save the ‘Project Collection’. Choose a suitable name eg.
Test.ppc and click the <Saves button.

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 65

Application Note

TO0L
Mumber Unique |d Wersion Build D ate Target Device Iin Firmware | Size [pages)
Q,? 1] ATMEGAZEE0JTAG 1.0.0.0 18/05/2008 st 1551 &Tmega2SE0 .. 207 3

Information

\E) Operation: Project has been added to a new Project Collection.
‘fou now need to Save the Project Collection file with a suitable name e.g. myprojectcollection.ppc.

The name can contain up to 128 characters and can be a mix of upper, lower and alphanumeric
characters.

The Project Manager window is now displayed — see section 6.4.

6.4 Uploading a Project to a programmer

The Project Manager window displays all the projects in your Project Collection.

E® Project Manager - C:\temp\ATmega256\Test.PPC E@@
Murnber | Unique Id Wersion Build D ate Target Device Min Firmware | Size [pages) Mame Author Fielative Path
o ATMEGAZEEDJTAG 1.0.0.0 20/06/2008 2t 11:21 ATmegaZBe0 [JTAG) 307 3

| | " Upload all projects...

Programmer Type: PPM3MK2 | Total FLASH usage - Used: 1.0 KB (0.0%:), Free: 4.0 MB bytes {100.0%)

In this example we have only one project called ‘ATMEGA2560-JTAG’.
The ‘Unique ID’ is the ‘Project Name’ which is also the file name you saved the project with in EDS.

To upload the project to the programmer:
e (lick the <Upload all projects> button
- uploads all the projects in the collection to the programmer.
or
e (Click once on the project you wish to upload in the Project Manager window and then click
the <Upload selected projects> button
-> uploads only the selected project in the collection to the programmer.
Follow the on-screen Upload Wizard instructions to complete the uploading of the project(s) to the
programmer(s).

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 66

Application Note

€QUINOX

The Embedded Solutions Company

6.5 Re-testing a Project in EDS (Development mode)

If you want to re-test a Programming Project in EDS (Development Mode), the simplest method to do

this is as follows:
e Use Project Manager to open your Project Collection (*.ppc file)

Click once on the project which you wish to test in EDS mode. This will select the project.

EBEX

£ Project Manager - C:\temp\ATmega256\Test.PPC
Target Device Min Firmware | Size [pages] Mame Author Relative Path

Mumber | Unigue Id Werzion Build Date
JTaGE 1.0.0.0

&' Upload all projects...

G Edit Project | 4 Test Project in EDS

Total FLASH usage - Used: 1.0 KB (0.0%), Free: 4.0 MB bytes (100,0%)

Programmer Type: PPM3 MK2

e (Click the <Test in EDS> button
- The selected project will now be opened in EDS (Development Mode).

Equinox Development Suite (EDS)... - C:\temp\ATmega256\Test ATMEGA2560-JTAG.EDS M=

Eeprom | Fuses | Security

Overview | Programmer | Target Device | Target Oscilator | JTAG Settings || Target Power Supply | Flash

Froject Infarmation:

L
otk -

= Open ¢ Modify Baze Programming Project

CF add Project file to a new Project Collection

Chy |Ipdate this project in an existing Project Collection

C:Memphd T mega2Bbha TMEGAZSE0-TAG. PPM

Project Mame: Author:
Project Yersion: Creation Date
1.0.00 20/08/2008 “

Pleaze note: To upload thiz project to a programmer, please either add the project to
an exizting Project Collection or create a new Project Collection.

e You can now test your project in EDS (Development Mode).

Application Note 105 — JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 67

