

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 1

Report No:

AN105

Title:

In-System Programming (ISP) of Atmel AVR

FLASH Microcontroller devices using the

JTAG Programming Interface

Author: Date: Version Number:

John Marriott

7th June 2010 1.23

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be
changed without prior notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not
convey nor imply any license under patent or other industrial or intellectual property rights

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 2

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 3

Contents

1.0 Introduction..5
1.1 Features ...5

General features ...5
JTAG chain (JTAG daisy-chained mode) ..6
In ‘Development Mode’ ...6
In ‘Production Mode’ ...6
Compatibility with Atmel AVR Studio software...6
Importing settings from Atmel ELF File supported...7
Compatibility with Atmel JTAG-ICE MK1 / MK2 Debugger ..7

1.2 Programmers supported ...8
1.3 Device Support ...9
1.4 JTAG versus SPI algorithm ..10
1.5 JTAG Algorithm Overview ..11
1.6 SPI Algorithm Overview..12
1.7 Upgrading your Equinox Programmer to support JTAG..13

1.7.1 Purchasing a JTAG License...13
1.7.2 How do I enable the programmer for JTAG? ..13
1.7.3 Upgrading an Epsilon5, FS2003 and FS2009 to support JTAG......................................13
1.7.4 Upgrading a PPM3-MK2 and PPM4-MK1 Programmer to support JTAG14
1.7.5 Entering the License String to upgrade your programmer ..15

1.8 Other related application notes ...16
2.0 JTAG Programming Algorithm..17

2.1 Overview ..17
2.2 JTAG Features ...18
2.3 JTAG PCB design / ISP cable guidelines..18
2.4 JTAG single-chip In-System Programming (ISP) Schematic...19
2.5 JTAG signals – TDI, TDO, TMS, TCK...20
2.6 AVR RESET signal...21
2.7 JTAG-in-a-chain In-System Programming (ISP) Schematic..22
2.8 JTAG connector compatibility with Atmel JTAG ICE MK1/MK2...23
2.9 Atmel 10-way JTAG Header (JTAG Interface) ..24
2.10 ISPnano Programmer – JTAG connections ..26
2.11 ISPnano - CONMOD Module - JTAG connections..27

3.0 Creating a JTAG Programming Project ..29
3.1 Overview ..29
3.2 Information required to create a JTAG Project..29
3.3 Creating an EDS (Development project) ...30

3.3.1 Launching EDS and selecting a Target Device...30
3.3.2 Target Oscillator Settings ...31
3.3.3 Target System – Power Supply Settings ..32
3.3.4 Specifying the FLASH (Code) File..33
3.3.5 Specifying the EEPROM (Data) File...34
3.3.6 Launching EDS at the end of the EDS Wizard..35

3.4 Testing a JTAG Project in Development (EDS) Mode...36
3.5 JTAG Frequency ..37
3.6 JTAG Device Chain settings...38

3.6.1 Overview..38
3.6.2 JTAG Chain settings ..39
3.6.3 JTAG Chain – Devices BEFORE / AFTER parameters ..39
3.6.4 JTAG Chain – Instruction Bits BEFORE / AFTER parameters..40
3.6.5 Calculating the ‘Bits Before’ value ..40
3.6.6 Calculating the ‘Bits After’ value ...40
3.6.7 Summary of the JTAG Chain settings ..41

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 4

3.7 Testing JTAG communication with the Target Chip.. 42
3.8 Programming the FLASH Area... 43
3.9 Programming the EEPROM Area... 44
3.10 Erasing the FLASH / EEPROM area .. 45

3.10.1 Erasing the FLASH area.. 45
3.10.2 Erasing the EEPROM area – special considerations ... 45

3.11 Programming the Configuration Fuses ... 46
3.11.1 Overview.. 46
3.11.2 Reading the Fuses from a Target Device... 47
3.11.3 Verifying the Fuses of a Target Device .. 47
3.11.4 Writing the Fuses into a Target Device .. 48
3.11.5 Using a ‘Fuse File’ to import Fuse settings into a project ... 48

3.12 Programming the Security Fuses ... 49
3.12.1 Overview.. 49
3.12.2 Reading the Security Fuses from a Target Device ... 50
3.12.3 Verifying the Fuses of a Target Device .. 50
3.12.4 Writing the Security Fuses into a Target Device... 51
3.12.5 Erasing the Security Fuses .. 51

3.13 Internal Oscillator Calibration – Factory OSCAL Byte... 52
3.13.1 Overview.. 52
3.13.2 Reading / writing the Oscillator Calibration Byte in EDS mode..................................... 52
3.13.3 Writing the Oscillator Calibration Byte in STANDALONE mode 54

3.14 Exporting an EDS Project to a Standalone Project ... 54
4.0 Exporting / Importing Fuse Settings to / from an Equinox Fuse File..................................... 55

4.1 Overview.. 55
4.2 Exporting the Fuse Settings to a Fuse File... 55
4.3 Copying the Fuses from a Target Device ... 55
4.4 Importing the Fuse Settings from a Fuse File ... 55

5.0 Importing Fuse Settings in HEX format from AVR Studio .. 57
5.1 Overview.. 57
5.2 Finding the AVR Studio ‘Hex Fuse Values’ .. 57
5.3 Importing the AVR Studio ‘Hex Fuse Values’ into EQTools .. 58
5.4 Importing the AVR Studio ‘Hex Security Fuse Values’ into EQTools 61

6.0 Creating a Standalone Programming Project .. 65
6.1 Overview.. 65
6.2 Creating a Standalone Project from EDS (Development Mode) ... 65
6.3 Add Project File to a new Project Collection... 65
6.4 Uploading a Project to a programmer... 66
6.5 Re-testing a Project in EDS (Development mode).. 67

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 5

1.0 Introduction

This application note describes how to develop and implement In-System Programming (ISP)

support for the Atmel AVR microcontroller family using the ‘JTAG Programming Interface’. The

document details how to make a JTAG ‘Programming Project’ which will operate on any Equinox

ISP programmer. A full description of all connection method required to implement JTAG In-System

Programming (ISP) of the Atmel AT90USB, AT90CAN and ATmega AVR FLASH Microcontroller is

also discussed.

1.1 Features

The Equinox range of programmers includes solutions for development, low / mid / high volume

production and field programming of Atmel AVR microcontrollers.

General features

• High-speed In-System Programming (ISP) support of Atmel AVR microcontrollers using the

‘JTAG programming interface’.

• Programming solutions for development, low / mid / high volume production and field

programming of Atmel AVR microcontrollers

• Programs the on-chip FLASH Memory, EEPROM Memory, Configuration Fuses and Security

Fuses

• Uses the Atmel AVR standard ‘JTAG Debug Interface’ port as the ISP interface

• Very high-speed programming due to local data storage in on-board FLASH inside the

programmer and optimised programming algorithms

• Programmers can be used in "Standalone Mode" (no PC required)

• Supports high-speed program / verify of the on-chip FLASH and EEPROM in a singe

operation.

• Supports programming of the factory calibrated ‘Oscillator Calibration Byte’

• Optimised Erase operations for FLASH and EEPROM

• Supports programming of non volatile ‘Configuration Fuses’

• Supports programming of the ‘Security Fuses’ to protect code from being read out

• Supports programming of any AVR microcontroller when placed in a ‘JTAG Chain’ (JTAG

daisy-chain mode)

• Supports up to 256 devices in a single ‘JTAG Chain’

• User-programmable ‘pre-programming state machine’ allows non-standard reset circuits to

be supported (both reset polarity and timing can be manually adjusted)

• User-configurable ‘JTAG frequency’ allows the JTAG signals to be matched to the target

hardware / wiring

• Target voltage can be measured and validated

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 6

JTAG chain (JTAG daisy-chained mode)

All Equinox programmers supports programming of an Atmel AVR microcontroller when it is

connected in a so-called ‘JTAG Chain’.

• Supports programming of any one of up to 256 devices in a single ‘JTAG Chain’

• User-programmable JTAG chain settings allowing the user to set up the configuration of the

target device in the chain.

• Multiple AVR devices in a chain can be programmed sequentially one-after-the-other using a

single programmer by making a separate ‘standalone project’ for each device in the chain.

• High-current TDI drive pin to ensure good signal integrity throughout the chain

In ‘Development Mode’

All Equinox programmers can be used in ‘Development Mode’ where the programmer is controlled

via our EDS software application running on the PC. This allows the user to control all programming

operations under PC control and so is ideal for the initial set up and testing of programming projects.

• Powerful yet simple-to-use Development Suite called ‘EDS’

• All aspects of programming the AVR device can be controlled from the PC using EDS

• Erase, Program, Read or Blank Check both the FLASH and EEPROM areas under PC control

• Program / Read back the ‘Configuration Fuses’

• Program / Read back the ‘Security Fuses’

• Program / Read back the factory calibrated ‘Oscillator Calibration Byte’

In ‘Production Mode’

It is all possible to use any Equinox programmer in standalone mode. In this mode, the programmer

operates without PC control and is capable of fully programming a target device.

• Programmers can be used in "Standalone Mode" (no PC required)

• A single ‘Standalone Programming Project’ can Erase the device, program /verify the

FLASH and EEPROM, program the ‘Configuration Fuse Bits’, program the ‘Oscillator

Calibration Byte’ and finally program the ‘Security Fuses’ all in a single operation.

• Up to 64 x AVR ‘Standalone Programming Projects’ can be stored inside an FS2003,

FS2009, PPM3-MK2, PPM4-MK1 or ISPnano programmer.

• Programmer can store multiple versions of firmware for different ‘customer product

versions’.

• A ‘Standalone Programming Project’ can be created from an ‘Atmel ELF File’ created by

e.g. AVR Studio

Compatibility with Atmel AVR Studio software

• Supports importing of Fuse and Lock Hex byte settings from AVR Studio

• Supports importing of FLASH, EEPROM, Fuse and Security settings from an ‘Atmel ELF File’

created by e.g. AVR Studio

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 7

Importing settings from Atmel ELF File supported

• Supports importing of FLASH, EEPROM, Fuse and Security settings from an ‘Atmel ELF File’

created by e.g. AVR Studio

• Allows a ‘development user’ to send a single ‘ELF File’ which can contain most of the data

required for production.

Compatibility with Atmel JTAG-ICE MK1 / MK2 Debugger

• All Equinox programmers can support connection to the standard Atmel 10-way AVR JTAG

IDC header connector.

• If your Target Board already works with the Atmel JTAG-ICE MK1 / MK2 debugger, then it

should work with any Equinox JTAG programmer.

• All Equinox programmers must be configured with the Equinox EQTools software. They will

not work with Atmel’s AVR Studio software.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 8

1.2 Programmers supported

All Equinox ISP Programmers are capable of supporting programming of Atmel AVR microcontrollers

using the ‘JTAG Programming Interface’. Some programmers offer this support as standard but

most require a ‘License upgrade’ to be purchased. Please refer to the table below for full details.

Fig. 1.2 Equinox Programmer – SPI and JTAG ISP Support

Programmer
Picture

Programmer
Order code

AVR SPI algorithms AVR JTAG algorithms

EPSILON5(UN)

Included as standard UPGRADE:
EPSILON5-UPG3

EPSILON5(AVR-
JTAG)

EPSILON5-UPG17 Included as standard

FS2003(UN)

Included as standard UPGRADE:
FS2003-UPG7

FS2009(UN)

Included as standard UPGRADE:
FS2009-UPG7

FS2009(AVRJTAG)

FS2009-UPG17 Included as standard

PPM3 MK2(UN)

Included as standard UPGRADE:
PPM3A1-UPG7
+ IO-CON-3 JTAG
Connector Module +
SFM-MAX-V1.3 Special
Function Module

PPM4 MK1(UN)

Included as standard UPGRADE:
PPM4MK1-UPG7
+ IO-CON-3 JTAG
Connector Module +
SFM-MAX-V1.3 Special
Function Module

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 9

ISPnano
Series I / II / III

UPGRADE
ISPnano-UPG17

UPGRADE
ISPnano-UPG7

ISPnano
Series III ATE

UPGRADE
ISPnano-UPG17

UPGRADE
ISPnano-UPG7

ISPnano-MUX2
ISPnano-MUX4
ISPnano-MUX8

UPGRADE
ISPnano-UPG17

UPGRADE
ISPnano-UPG7

Key:

• UPGRADE – Chargeable license upgrade required

1.3 Device Support

Please refer to the latest Device Support List for the devices which are currently supported by the
Equinox range of programmers.

This can be found:

1. As a Download available on the website:
- Click on the Downloads tab.
- Under ‘Download Type’ choose Device Support Lists / Release notes then click

Search.

2. Browsing on the Device Support tab under each product.

3. In the latest version of EQTools:

- Select EQTools. Go to <Programmer><Create a Device Report>.
- All programmers and devices supported are listed in this document.
- You will need the most recent EQ-Tools build version – please refer to the website for

further details.

Please note:

• As a rule of thumb, only Atmel Atmega AVR devices with 16k bytes of FLASH or greater will
feature the JTAG Programming Interface.

• Some ATmega devices such as the ATmega8(L) and ATmega161(L) do not have a JTAG port
and so cannot support JTAG programming.

• Devices with greater than 128kb of FLASH memory require a firmware upgrade to version
3.01 or above in order to support programming of the upper 128kb.

• It is possible to program devices connected in a ‘JTAG Chain’ using firmware 3.05 or above.

• Please see Application Note – AN112 for instructions on updating your programmer
firmware.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 10

1.4 JTAG versus SPI algorithm

The table below compares the JTAG and SPI programming algorithms for the Atmel AVR family of

microcontrollers.

Parameter

SPI algorithm JTAG algorithm Comments

Programming speed Much slower than
JTAG

x3 or x4 times faster
than SPI

Depends on SPI / JTAG
clock frequencies

Programming reliability Depends on AVR
clock frequency

Very good

In-System Debugging Not possible Yes – use Atmel JTAG-
ICE debugger

JTAG port normally
used during
development phase

Boundary Scan Testing Not possible Yes – requires external
JTAG tester

Very useful for
production testing.

Multiple AVR
programming on same
Target Board

Very difficult in SPI
mode

Possible to daisy-chain
multiple AVR devices
in a JTAG chain.

Only one device can be
programmed at a time.

EEPROM programming
speed

Slow on most
devices as 1 byte
per page

x4 or x8 times faster as
programmed in 4 or 8
byte pages

Some newer AVR
devices do have ‘Page
Mode’ programming.

EEPROM Erase cycle Each EEPROM byte
can be individually
erased

A Chip Erase is
required to erase any
non 0xFF location

Cannot use JTAG mode
to re-program EEPROM
without erasing FLASH.

Programming pins
required

3 + RESET
MOSI, MISO, SCK

4 + RESET
TDI, TDO, TCK, TMS

RESET pin is required
for both SPI and JTAG

Programming pins can
be used for user I/O?

Yes Not recommended Try not to put other
components on pins.

RESET pin control
required?

Yes Yes The RESET pin is
essential for SPI and
JTAG operation.

Programming
dependent on AVR
clock settings?

Programming will
fail if a valid clock is
not applied to the
AVR device.

Programming should
always work in JTAG
mode even if the AVR
does not have a valid
clock source.

In SPI mode, an AVR
device can be rendered
no longer programmable
by selecting an incorrect
clock source.

Possible to lock out SPI
/ JTAG port

Yes – but only from
JTAG mode

Yes – from SPI and
JTAG mode

Need to unset the
SPIEN or JTAGEN fuses

Scramble AVR fuses by
accident?

Very easy to do by
mistake!!!

Most fuse issues can
be recovered in JTAG
mode.

Use JTAG mode to
recover a device with
scrambled fuses.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 11

1.5 JTAG Algorithm Overview

The JTAG algorithm provides a method of performing high-speed programming of an Atmel Atmega

AVR microcontroller. The same JTAG port can also be used for on-chip debugging of code using the

Atmel JTAG-ICE Debugger. The advantages and disadvantages of the JTAG algorithm are detailed

below.

Advantages

• The JTAG algorithm is approximately 3-4 times faster at programming compared to the SPI

algorithm.

• The programming time using JTAG for the EEPROM is significantly faster than the SPI

algorithm because in JTAG mode a ‘Page’ of EEPROM is programmed at a time rather than a

single byte. Each byte may take e.g. 9ms to program in SPI mode, where as a whole page of

e.g. 4 bytes may take 9ms to program in JTAG mode.

• The JTAG algorithm uses the same ‘JTAG Port’ as the Atmel JTAG-ICE Debugger. This

means that the same port can be used for both debugging during the development phase and

also programming during the production phase of the product.

• With the JTAG algorithm, the programming clock is supplied by the programmer and JTAG

logic inside the Target AVR device does not require any other clocking. This means that the

chip is not dependent on the settings of the ‘Clock Selection Fuses’ in JTAG Mode.

• In JTAG mode is it possible to change the ‘Clock Selection Fuses’ to any value and still

program the chip. (with the exception of the ‘JTAGEN’ Fuse)

• It is possible to use the JTAG port of the Target Microcontroller to perform in-circuit testing of

the microcontroller and surrounding circuitry. This testing is performed by shifting Test Data

through the JTAG port of the Target Microcontroller. A JTAG Test System is required to

perform this testing. It is not supported by any Equinox Programmer or the Atmel JTAG ICE.

• It is possible to daisy-chain multiple JTAG devices on the JTAG bus in a so-called ‘JTAG

Chain’ and then select to program a particular device in the chain. This functionality is now

supported by Equinox programmers running firmware 3.05 and above.

Disadvantages

• The JTAG Programming Interface uses 5 pins: TCK, TDI, TDO, TMS and RESET.

• The JTAG pins of the microcontroller are not designed for off-board use and should not be

shared with any other circuitry on Target Board. This means that the JTAG port pins must be

dedicated for programming / debugging.

• In JTAG mode the EEPROM is divided into ‘Pages’ rather than ‘Single Bytes’. It is therefore

more complicated to program a single byte in the EEPROM as the entire page (usually 4 or 8

bytes) must be read back and then the single byte overlaid on top of this data and finally the

entire page is then re-programmed back into the EEPROM.

• In JTAG Mode, it is not possible to re-program any location in the EEPROM which is not 0xFF

without first performing a Chip Erase operation. This means that if the EEPROM already

contains any data, it is not possible to re-program this data without erasing the entire chip first.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 12

1.6 SPI Algorithm Overview

The SPI algorithm is a simple 3-wire interface which can be used to program most AVR

Microcontrollers. The advantages and disadvantages of this algorithm are detailed below.

Advantages

• The SPI algorithm is supported by almost all Atmel AVR microcontrollers including AT90S,

AT90CANxxx, ATtiny and ATmega devices. This means that the same Programming Interface

can be used on any products containing any AVR microcontroller.

• The SPI Programming Interface uses only 3 SPI pins (MOSI, MISO, SCK) and the RESET pin.

• The SPI pins can be used to drive other circuitry such as LED’s and switches on the Target

Board as well as being used for ISP purposes. However, this will require careful design on the

Target Board to ensure that the programming signals are not compromised.

• In SPI Mode, it is possible to reprogram a single byte of the EEPROM area without having to

perform a Chip Erase first.

• The SPI algorithms are supported as standard on all Equinox ISP Programmers.

Disadvantages

• In general terms, the SPI algorithm is 3-4 times slower than the JTAG algorithm.

• When using the SPI algorithm, the clock used during programming is supplied from either the

AVR Internal RC Oscillator or from an external crystal / resonator. The programming SPI

speed is completely dependent on the speed of this oscillator.

• If the oscillator speed is slow, then the maximum SPI speed is seriously limited and the overall

programming will be very slow.

• If the AVR ‘Clock Selection Fuses’ are incorrectly programmed in SPI mode, then the chip

may no longer have a valid oscillator and so will not respond to the programmer. This can

render the chip non-programmable except by physically removing it from the Target Board and

using either a JTAG or Parallel programmer to resurrect the correct fuse settings.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 13

1.7 Upgrading your Equinox Programmer to support JTAG

The AVR JTAG algorithms are not supported as standard on any Equinox programmers (for

exceptions – see below*). It is necessary to purchase a ‘License Upgrade’ for AVR JTAG support

from Equinox. Equinox will then send you a ‘JTAG Upgrade License String’ which will upgrade your

programmer to support JTAG programming.

Please note

The following ‘Standalone programmer’ and ‘Bundle’ options have the AVR JTAG license pre-

installed, therefore these instructions are not necessary:

• Epsilon5(AVR-JTAG)

• EPS-AVRJTAG-BUNDLE

• FS2009(AVR-JTAG)

1.7.1 Purchasing a JTAG License

All Equinox ISP programmers require the purchase of a ‘License Upgrade’ to enable JTAG support.
Please see the table in section 1.1 for the relevant upgrade for your programmer.

1.7.2 How do I enable the programmer for JTAG?

To enable your programmer to support JTAG ISP programming, please purchase the relevant JTAG
Upgrade from Equinox or an Equinox distributor:

1. If you purchase the upgrade directly from Equinox

• Equinox will email you a ‘JTAG License String’.

• This string can be entered directly into the <Enter License> screen in EQTools.

2. If you purchase the upgrade from a distributor

• The distributor will send you the Upgrade Pack by courier.

• Within the Upgrade Pack you will find an Upgrade Form with a Code String on it.

• Email this Code String plus your programmer Serial Number to support@equinox-
tech.com

• Equinox will then send you a ‘JTAG License String’ which is keyed to your
programmer Serial Number.

• This string can be entered directly into the <Enter License> screen in EQTools.

1.7.3 Upgrading an Epsilon5, FS2003 and FS2009 to support JTAG

To upgrade an Epsilon5, FS2003 or FS2009 programmer to support JTAG, please follow the steps
below:

• Order An AVR JTAG License from Equinox

• Enter the ‘JTAG Upgrade License String’ given to you by Equinox into EQTools – see
section 2.9.5 below.

• Make sure you have the required version of Programmer Firmware to support the device you
wish to program.

• Plug the 10-way ISP cable supplied with the programmer into the ‘J8 – JTAG-10’ ISP Header
on the programmer.

• Connect the other end of the 10-way ISP cable to the JTAG port on your Target Board

• You are now ready to program a Target AVR Chip via JTAG.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 14

1.7.4 Upgrading a PPM3-MK2 and PPM4-MK1 Programmer to support
JTAG

To upgrade a PPM3-MK2 or PPM4-MK1 programmer to support JTAG, please follow the steps below:

• Order a ‘PPM3-MK2 / PPM4-MK1 JTAG upgrade’ from Equinox Technologies

• Enter the ‘JTAG Upgrade License String’ given to you by Equinox into EQTools – see section
2.9.5 below.

• The JTAG upgrade also includes a new ‘I/O Connector Module’ for the PPM3-MK2 and PPM4-
MK1 called the ‘I/O-CON-3’. This module has a JTAG 10-way header which has the same pin-
out as the JTAG-ICE.

• It also includes the High Speed / High Current Special Function Module ‘EQ-SFM-MAX-V1.3’.
This significantly reduces the overall programming times for many high capacity devices. For
full instructions on fitting this module please refer to Application Note AN115 provided with
your upgrade

• Make sure you have the required version of Programmer Firmware to support the device you
wish to program.

• Plug the ‘I/O-CON-3’ module into the programmer.

• Plug the 10-way ISP cable supplied with the programmer into the ‘JTAG’ ISP Header on the
‘I/O-CON-3’ module.

• Connect the other end of the 10-way ISP cable to the JTAG port on your Target Board

• You are now ready to program a Target Chip via JTAG

EQ-IOCON-3

I/O Connector Module 3 (JTAG) – Fast Connect Version

I/O connector module for In-System Programming (ISP) of Atmel microcontrollers

using JTAG protocol

Features:

• Plugs into suitable Equinox programmer e.g. PPM3 or PPM4 Module

• Atmel 10-way JTAG IDC ISP connector (same as JTAG-ICE)

• Atmel 6-way IDC ISP Header

• Equinox 10-way IDC ISP header

• Single-in-line header with all programmer I/O brought out for wire-wrapping
to bed-of-nails probe wires

• Screw terminals for power connections

• Target Vcc Status LED

• Link to connect / isolate the programmer Vcc from the Target Vcc

Please note
The ‘Atmel AVR JTAG License’ (Order code: PPM3A1-UPG7 / PPM4MK1-UPG7)
is also required to enable the PPM3 and PPM4 to program Atmel AVR devices via
JTAG.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 15

1.7.5 Entering the License String to upgrade your programmer

Once you have received the License String from Equinox, please follow the steps below to apply the
upgrade to your programmer:

• Launch EQTools � The EQTools ‘Welcome Screen’ is displayed.

• Close down the EQTools ‘Welcome Screen’

• From the top menu bar, select <Programmer><Programmer Info>
� the Programmer Information screen is displayed

• Click the <Enter License> button
� The <Enter License Key> screen is displayed.

Enter the License String you were sent by Equinox

• Click <OK>
� EQTools should acknowledge that the attached programmer has been upgraded.

• Click <OK>

• If you now check the Programmer Info screen, you should find that the entry for
‘ATmega JTAG ISP’ is now ENABLED.

• Your programmer is now upgraded to support JTAG programming of Atmel AVR
Microcontrollers.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 16

1.8 Other related application notes

The table below lists the Application Notes available for all Atmel microcontroller, serial EEPROM,

Serial FLASH and Serial DataFLASH devices.

Application
Note

Device Family Programming
Interface

AN100 Atmel - AT89Sxxxx FLASH microcontrollers SPI

AN101 Atmel - AVR FLASH microcontrollers via the SPI Interface SPI

AN105 Atmel - AVR FLASH microcontrollers via the JTAG Interface JTAG

AN118 Generic I2C 24xxx Serial EEPROM memories I2C

AN122 Atmel - AT91SAM7 ARM7 FLASH microcontrollers JTAG

AN127 Atmel – XMEGA AVR FLASH microcontrollers via the 2-wire PDI

interface

PDI

AN132 Atmel ATtiny AVR microcontrollers via the TPI interface TPI

AN133 Atmel AT45D Serial DataFlash programming SPI

These application notes can be found in PDF format on the CD-ROM which was supplied with the

programmer. You can also find the very latest versions on the “ISPnano Download Page” on the

Equinox website.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 17

2.0 JTAG Programming Algorithm

2.1 Overview

The ‘JTAG Programming Interface’ provides a method for both In-System Debugging (ISD) and

In-System Programming (ISP) of Atmel ATmega AVR Microcontrollers. It uses an industry-standard

set of signals to provide the connection between the programmer / debugger and the AVR

microcontroller. However, the actual JTAG Header (connector) used by Atmel and Equinox is specific

to Atmel AVR JTAG programming and will not match JTAG connectors for JTAG devices from other

manufacturers.

In the development environment……

…..The JTAG Interface can be used for In-System Debugging of the code running on the actual

Target System. This method of operation requires the use of the Atmel ‘JTAG-ICE MK1’ or ‘JTAG-

ICE MK2’ debugger to program firmware into the FLASH of the target AVR microcontroller. Once the

code is downloaded into FLASH, it is then possible to execute and debug this code under PC control.

The debugger Software (AVR Studio) allows you to set breakpoints in the code, read / write memory

locations, look at register contents etc.

In the production environment…..

……The JTAG Interface can be use for high-speed In-System Programming (ISP) of the Target

AVR Microcontroller. This method of operation requires the use of any Equinox ISP Programmer

which has been enabled to support the ‘AVR JTAG’ algorithms.

The Equinox ISP Programmer range supports high-speed In-System Programming (ISP) of a single

or multiple Atmel AVR microcontrollers on a Target Board using the 4-wire JTAG inerface. Support

has now been added for programming of any Atmel AVR microcontroller when connected as part of a

‘JTAG Chain’. This mode allows multiple JTAG devices to be in-system programmed using a single

JTAG bus.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 18

2.2 JTAG Features

• Fast Programming speeds

• Simple 4-wire JTAG bus connection + RESET signal

• JTAG programming does not depend on the AVR oscillator frequency so JTAG programming

will always work

• JTAG interface is compatible with the Atmel JTAG-ICE MK2 In-System Debugger so same

interface can be used for development and production.

• Both single microcontroller and ‘JTAG-in-a-chain’ implementations are supported

2.3 JTAG PCB design / ISP cable guidelines

The following guidelines are provided for designing an ‘AVR based Target Board’ which is to be

programmed via the JTAG interface.

• Proper decoupling - Make sure the AVR microcontroller is well decoupled.

• No JTAG in-line resistors - Avoid placing any resistors in the JTAG lines TDO, TDI, TCK,

TMS as this can skew the waveforms so the JTAG clock is not sampled correctly.

• No JTAG capacitors - Avoid placing any capacitors from any of the JTAG lines to 0V as this

will slug the waveforms and probably stop JTAG working reliably.

• JTAG pull-up resistors - It is recommended that either the Target Board or the Test Fixture

has pull-ups e.g. 47k ohm on the JTAG signal lines. (The programmer does not have any pull-

ups)

• RESET pin connection - Make sure that the RESET pin of the target AVR microcontroller is

brought out to the programming header. It is essential that the programmer can control the

RESET pin of the AVR device !!!

• Cable length - Keep the cable length between the Target Board and the programmer as short

as possible. e.g. no more than 15cm in length.

• JTAG relays etc - Do not use any relays or electronics analogue switches in the JTAG signal

lines if at all possible.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 19

2.4 JTAG single-chip In-System Programming (ISP) Schematic

The diagram below details the connections required to implement JTAG In-System Programming of a

single Atmel ATmega AVR Microcontroller using an Equinox ISP programmer.

Fig 2.4 – ATmega AVR – JTAG Programming Interface connections

TCK

TDI

TDO

TMS

Vcc

Vss

RESET

PROG_RESET

PROG_TCK

PROG_TDI

PROG_TDO

PROG_TMS

Atmel
ATmega

Microcontroller

PROG_VCC

PROG_GND

Reset

Circuit

J

T
A
G

P

O
R

T

ATmega AVR – JTAG Programming Interface - signal names and directions

Please note:

• The RESET connection is essential in JTAG mode. This allows the programmer to reset the

Target Microcontroller and release the JTAG port for programming.

• It is recommended that either the Target Board or the Test Fixture has pull-up resistors e.g.

47k ohm on the JTAG signal lines.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 20

2.5 JTAG signals – TDI, TDO, TMS, TCK

The JTAG programming interface for AVR devices uses four data lines: TDI, TDO, TMS and TCK.

The table below shows the relevant direction of each JTAG signal line.

Programmer
Signal Name

Signal description Signal
direction
(from
Programmer)

Connect to
AVR
Microcontroller
Pin

Signal direction
(from
Microcontroller)

PROG_TCK Test Clock Pin Output TCK Input
PROG_TDI Test Data Input Output TDI Input
PROG_TDO Test Data Output Input TDO Output
PROG_TMS Test Mode Select Output TMS Input
PROG_RESET RESET Output RESET Input

When programming in JTAG mode, the programmer provides the clock to the “JTAG TAP

Controller” inside the target AVR device. The programmer clocks data out of the ‘TDI’ pin on the

programmer into the ‘TDI’ pin on the AVR device.

This data is then shifted through a shift-register inside the AVR device and appears out of the ‘TDO’

pin on the AVR device. This bit-stream is then fed back into the programmer ‘TDO’ pin.

Please note:

• It is recommended that either the Target Board or the Test Fixture has pull-ups e.g. 47k ohm

on the JTAG signal lines.

• The target AVR device must drive the ‘TDO’ pin back via the ISP cable to the programmer.

This pin is susceptible to noise and skew as the AVR only drives the pin for part of the duty-

cycle of the waveform. It may be necessary to use a stronger pull-up or some sort of buffering

on this pin if long ISP cables are being used.

• No in-line resistors or capacitors to 0V should be placed in any of the JTAG signal lines as

they could skew / slug the waveforms leading to erratic programming operation.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 21

2.6 AVR RESET signal

When programming Atmel AVR devices using the JTAG Interface, it is imperative that the

programmer can control the RESET pin of the target AVR microcontroller. It does not matter if the

RESET signal from the programmer goes through other logic on the Target Board, as long as the

programmer is capable of forcing the RESET pin LOW when commencing a JTAG programming

operation.

The reasons for requiring control of the RESET pin are as follows:

• If any user firmware which is programmed into the target AVR device writes to any of the

JTAG pins or sets up the ‘Data Direction Registers’ of the JTAG port incorrectly, then the

JTAG port will no longer operate correctly and entering JTAG programming mode will fail.

• If any user firmware which is programmed into the target AVR device happens to execute the

AVR instruction to disable the JTAG port (usually for power consumption reasons), then the

programmer will not be able to enter JTAG programming mode.

• The programmer must assert the RESET pin of the target AVR microcontroller LOW when

commencing a JTAG programming operation. This forces the AVR device to stop running

firmware and releases / resets the JTAG port so the programmer can communicate with it.

Warning!

• Any AVR Target System which does not allow control of the RESET pin may be

programmable once only via JTAG and then all subsequent attempts to enter JTAG

programming mode may fail.

• Once the target AVR device is in JTAG mode, the RESET pin will have no effect until JTAG

mode has been exited. This will hold the AVR device in reset so it cannot execute code.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 22

2.7 JTAG-in-a-chain In-System Programming (ISP) Schematic

The diagram below details the connections required to implement JTAG In-System Programming of

either a single or multiple Atmel ATmega AVR Microcontrollers which are connected in a ‘JTAG

Chain’ arrangement.

Fig 2.7 – ATmega AVR – JTAG Programming Interface connections

The TDI signal is fed into the TDI input on the first JTAG Device in the chain. The data path then goes

through the first device and comes out on the TDO pin. The TDO pin is connected to the TDI pin of

the next JTAG Device in the chain.

ATmega AVR – JTAG Programming Interface - signal names and directions

Programmer
Signal Name

Signal description Signal
direction
(from
Programmer)

Connect to
AVR
Microcontroller
Pin

Signal direction
(from
Microcontroller)

PROG_TCK Test Clock Pin Output TCK Input
PROG_TDI Test Data Input Output TDI Input
PROG_TDO Test Data Output Input TDO Output
PROG_TMS Test Mode Select Output TMS Input
PROG_RESET RESET Output RESET Input

Please note:

The RESET connection is essential in JTAG mode. This allows the programmer to reset the Target

Microcontroller and release the JTAG port for programming.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 23

2.8 JTAG connector compatibility with Atmel JTAG ICE MK1/MK2

The JTAG port of an ATmega AVR Microcontroller can be used for both debugging and programming

purposes. The Equinox ‘JTAG ISP Header’ pin-out found on all Equinox ISP Programmers uses the

same pins as the Atmel ‘JTAG ICE MK1 / MK2 Debugger’ so it is possible to use the same

connector / cabling for both programming and debugging.

Fig. 2.8 JTAG ISP 10-way IDC Header

Atmel 10-way JTAG IDC Header Atmel JTAG ICE MK1 or
MK2

Equinox ISP Programmer

Important notes:

1. RESET pin connection

The RESET pin of the AVR Microcontroller must be brought out to the ISP Header. It is not actually

required for the JTAG algorithm as the control of programming initiated via a JTAG command.

However, the Equinox programmer / Atmel JTAG-ICE can use the RESET pin to RESET the Target

AVR microcontroller to ensure that the AVR JTAG port is not driving any I/O pins which could cause

contention during programming. The JTAG-ICE also needs control of the RESET pin to force the AVR

microcontroller to execute code when in debugging mode.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 24

2.9 Atmel 10-way JTAG Header (JTAG Interface)

This connection method is suitable for interfacing any Equinox ISP Programmer to a Target System

which features the following:

• An Atmel device which features a JTAG ISP port e.g. ATmega128 / 64 / 32 / 16 etc.

• Atmel 10-way IDC JTAG Header

• The pin-out is the same as the “JTAG connector” used on the Atmel JTAG-ICE MK1 / MK2

debuggers., STK500, STK600 and all associated Atmel STK plug-in boards.

To implement this connection, simply plug the 10-way ISP cable into the JTAG ISP Header and plug

the other end of the cable into the matching header on the Target System.

Figure 2.9 - Atmel 10-way JTAG IDC Header viewed from
above

Warning!

Connecting to the wrong ISP Header may cause

catastrophic damage to the Programmer & Target

System

Pin
No

Programmer
Pin name

Programmer
Input /
Output

Connect to
pin on
Target Device

Description

1 PROG_TCK O TCK JTAG TCK – Test Clock Signal pin

Clock signal from programmer to Target

Device JTAG port.

2 PROG_GND P GROUND Ground Connection

Common ground connection between

Programmer and Target System.

3 PROG_TDO I TDO JTAG TDO – Test Data Output pin

Data signal from Target device JTAG port

to programmer.

4 PROG_VCC P TARGET_VCC

Target Vcc Connection

- Pins 4 + 7 are physically connected

inside the programmer.

- Connects to Vcc rail of Target System.

- Pin referred to as VTref on Atmel JTAG-

ICE.

5 PROG_TMS O TMS JTAG TMS – Test Mode Select pin

Mode Select Signal from programmer to

Target Device JTAG port.

6 PROG_RESET O RESET Microcontroller RESET control signal

This pin connects to the main RESET pin

of the Target Microcontroller.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 25

7 PROG_VCC P TARGET_VCC Target Vcc Connection

- See pin 4

- Pins 4 + 7 are physically connected

inside the programmer.

8 N/C O N/C Not Connected

9 PROG_TDI O TDI JTAG TDI – Test Data Input pin

Data signal from programmer to Target

Device JTAG port.

10 PROG_GND P GROUND Ground Connection

Common ground connection between

PROGRAMMER and Target System.

Key

O - Output from programmer to Target Device

I - Input to programmer from Target Device

P - Passive e.g. GROUND and power rails

N/C - Not connected

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 26

2.10 ISPnano Programmer – JTAG connections

The illustration below shows the location of the ‘Target ISP Connector’ port on the rear panel of the
ISPnano Series I / II and III programmers.

‘Target ISP Connector’ port

The connector is a 16-pin bump-polarised IDC
connector with 0.1” pin spacing.

Pin 1 is the top right pin as shown in the diagram
opposite.

The table below details the connections for programming Atmel AVR microcontrollers via the JTAG
Interface using the ISPnano programmer ‘Target ISP Connector’ port
 .

Pin
No

Programmer
Pin name

Programmer
Input /
Output

Connect to
pin on
Target System

Notes

1 + 2

TARGET_VCC P TARGET_VCC Target VCC

3 + 4 TARGET_EXT_VCC P See notes. Target External VCC

5 + 6 PROG_GND P Signal GROUND

(0V)

Signal Ground Connection

10 Programmer I/O5 I/O Spare I/O

11 Programmer I/O4 I/O JTAG – TMS JTAG – Test Mode Select

12 Programmer I/O3 I/O JTAG - TCK JTAG – Clock

13 Programmer I/O2 I/O JTAG - TDO JTAG – Data Out

14 Programmer I/O1 I/O JTAG - TDI JTAG – Data In

16 PROG_RESET O RESET Target RESET control pin

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 27

2.11 ISPnano - CONMOD Module - JTAG connections

This section describes how to use the ‘ISPnano CONMOD Module’ to connect an

ISPnano programmer to an ‘Atmel AVR microcontroller’ using the 4-wire JTAG interface. The

programmer connects to the 16-way IDC port labelled (3) and the ‘Atmel AVR microcontroller’

connects to the 10-way IDC connector labelled (1) in the picture below.

Please note:

• The ‘Atmel JTAG’ 10-way IDC connector – marked (1) in the above picture has the same pin-

out as the standard ‘JTAG’ found on the Atmel JTAG-ICE MK1/MK2 debugger and also the

STK500 / STK600 evaluation kits.

• All relevant connections for JTAG are already made on the CONMOD board so there is no

need to add any other connections to get JTAG to work.

Instructions

• Referring to the annotated picture above

• Plug the 16-way IDC cable supplied with the programmer between the programmer ‘Target

ISP Port’ (16-way IDC connector) and the CONMOD Module 16-way header (J7) – see arrow

(3).

• The ‘JTAG Port’ is the 10-way IDC connector labelled ‘Atmel JTAG’ – see arrow (1)

• Set up the ‘Target Vcc Select’ jumper so that the programmer powers the Target Board – see

red box marked (2) in the picture.

1 2

3

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 28

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 29

3.0 Creating a JTAG Programming Project

3.1 Overview

A Programming Project for an ‘AVR JTAG Device’ can be created in exactly the same as you would

for an ‘SPI Device’ except that the device must now be selected from the JTAG Device Library. All

the settings are the same except for the <Pre-Programming State Machine> and the <JTAG

Settings>.

3.2 Information required to create a JTAG Project

The following information is required about the Target Board in order to create a JTAG Programming
Project:

Information / data required Example

1 AVR Device part number ATmega2561
2 JTAG connections / connector on Target board Atmel 10-way IDC connector
3 JTAG configuration i. Single JTAG device

or
ii. JTAG device is part of a ‘JTAG chain’

4 JTAG chain configuration parameters

These parameters are required if the device to
be programmed is part of a ‘JTAG chain’. If a
single device is to be programmed via JTAG,
then simply set all the ‘JTAG Chain’
parameters to ‘0’.

• Devices before: 0

• Devices after: 0

• Bits before: 0

• Bits after: 0

5 Target device oscillator frequency e.g. 12 MHz
6 Target System Vcc voltage e.g. 3.3V
7 Target System maximum current consumption e.g. 100mA
8 FLASH area ‘Program File’ Binary (*.bin) or Intel Hex (*.hex)
9 EEPROM area ‘Data File’ Binary (*.bin) or Intel Hex (*.hex)
10 Configuration Fuse values

These fuse values describe how the
‘Configuration Fuses’ in the ATmega device are
to be programmed.

i. Boolean fuse values:
e.g. SPIEN=0, CKSEL=1, CKSEL2=0 etc

or
ii. Fuse Hex values from ‘AVR Studio’
e.g. 0x22 0x45 0x34

11 Reset circuit parameters e.g.

• Capacitor / Resistor circuit

• Watchdog supervisor circuit

• Voltage monitoring circuit

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 30

3.3 Creating an EDS (Development project)

The simplest way to create a Programming Project for a JTAG device is to use the EDS

(Development Mode) Wizard as follows:

3.3.1 Launching EDS and selecting a Target Device

• Launch EQTools

• Select <Create a new Development (EDS) Project> � the EDS (Development) Wizard will

launch

• Click <Next> � the <Select Target Device> screen will be displayed.

• Type in the ‘Device Part Number’ eg. ATmega2560 into the ‘Search for Device’ field

� a list of all matching devices will be displayed in the box underneath.

• Select the required device from the list and then click <OK>

� the device is now selected.

• On the next screen, check that the device selection and all other device parameters are

correct

• The project is set to automatically read and validate the ‘JTAG ID’ of the Target Device by

default. The ‘JTAG Revision’ is not validated if the first digit of the ‘JTAG ID’ is ‘0’.

• If you do not want to validate the ‘JTAG ID’, untick the ‘Read JTAG ID’ tick box.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 31

• Click <Next> to advance to the next screen

3.3.2 Target Oscillator Settings

This screen allows you to set up the ‘Target Oscillator frequency’ .

The ‘Target Oscillator frequency’ is the frequency which the Target Device is being clocked at

during the In-System Programming Process.

INTERNAL RC Oscillator

• Many Atmel AVR devices feature both an ‘INTERNAL RC’ on-chip oscillator and also the

ability to run from an EXTERNAL crystal or Ceramic Resonator.

• When a virgin device from Atmel is programmed for the first time, it will usually be running

from an INTERNAL Oscillator.

• The frequency of the oscillator is usually set at the factory to be approximately 1MHz.

• This INTERNAL Oscillator is ‘factory calibrated’ by Atmel – see section 3.13 for further

details on how to use the factory calibrated OSCAL value.

• If the Target Device is running from an INTERNAL oscillator e.g. 1MHz internal, select

‘Internal Oscillator’ and select the internal oscillator frequency from the drop-down list.

EXTERNAL Oscillator:

• If the Target Device is running from an EXTERNAL oscillator e.g. crystal or ceramic resonator,

select ‘External Oscillator’ and enter the oscillator frequency. This frequency should be

written on the oscillator component itself or on the circuit schematic.

• The ‘Programmer OP4 Clock’ can be used to clock a device which has no oscillator. This is

not required for JTAG programming.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 32

Please note:

The Target Oscillator speed is not technically required for JTAG programming as the programmer

provides the clock during programming. If you do not know the Oscillator Frequency, simply leave

all settings as the default values.

3.3.3 Target System – Power Supply Settings

This screen allows you to set up the Power Supply characteristics of your Target System.

i. Select the Target Voltage

• This should be the voltage at which the Target System is being powered during the

programming operation.

• Set the ‘Voltage Tolerance’ to be as wide as possible e.g. 500mV to allow for power supply

variations. If the programmer is powering the Target System, this will also give a faster power-

up time.

• It may be possible to power just the Target Microcontroller rather than the entire Target

System.

 ii. Set up the Target Powering and current parameters

• This option is only available for the PPM3-MK2 programmer.

• If the programmer is to power the Target System, select <Programmer controlled Target

Power Supply: ON>

• Set the ‘Maximum Current’ to the maximum possible current which the Target System could

draw from the programmer.

• Leave all other settings as default.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 33

3.3.4 Specifying the FLASH (Code) File

This screen allows you to specify the Code (firmware) file which is to be programmed into the FLASH

area of the Target Device. This is an optional step – you can also specify the file once you are in the

Development Suite (EDS).

i. Blank Check the FLASH

• If the chip has been erased at the start of the programming cycle, then the FLASH should

already be blank (i.e. all locations contain the value 0xFF).

• If you want to be absolutely sure the FLASH is blank, you can enable the ‘Blank Check Flash’

option. This will perform a full Blank Check of the FLASH area to check that all locations are

set to 0xFF.

• Warning – this check can be time-consuming and will increase the overall programming time!

ii. Selecting the FLASH File

• Click the <Browse> button

• Browse to and select the file you wish to load and then select <OK>

• If the input file is a BINARY file then the wizard will load the data in from file starting at address

0x0000 and continuing contiguously to the end of the file.

• If the input file is an INTEL HEX file then the wizard will load in from file from the start address

specified in the file to end address specified in the file.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 34

3.3.5 Specifying the EEPROM (Data) File

This screen allows you to specify the EEPROM (data) file which is to be programmed into the

EEPROM area of the Target Device. This is an optional step – you can also specify the file once you

are in the Development Suite (EDS).

i. Blank Check the EEPROM

• If the chip has been erased at the start of the programming cycle, then the EEPROM should

already be blank (i.e. all locations contain the value 0xFF).

• However, if the Target Device has an ‘EESAVE’ fuse and this fuse is ENABLED (EESAVE=0),

then the EEPROM will not be erased during the Chip Erase operation.

• If you want to be absolutely sure the EEPROM is blank, you can enable the ‘Blank Check

EEPROM’ option. This will perform a full Blank Check of the EEPROM area to check that all

locations are set to 0xFF.

• Warning – this check can be time-consuming and will increase the overall programming time!

ii. Selecting the EEPROM File

• Click the <Browse> button

• Browse to and select the file you wish to load and then select <OK>

• If the input file is a BINARY file then the wizard will load the data in from file starting at address

0x0000 and continuing contiguously to the end of the file.

• If the input file is an INTEL HEX file then the wizard will load in from file from the start address

specified in the file to end address specified in the file.

• In JTAG Mode, the granularity of the EEPROM Memory is either 4 or 8 bytes. This means that

the programmer will always program in blocks of 4 or 8 bytes. Your input file will therefore be

rounded up to the nearest block of 4 or 8 bytes.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 35

3.3.6 Launching EDS at the end of the EDS Wizard

Once you reach the end of the EDS Wizard, click the <Test> button to launch the project in the

Equinox Development Suite (EDS).

Enter a name for the EDS project e.g. ATmega256 and click the <Test> button

� your project will now launch in EDS (Development) Mode.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 36

3.4 Testing a JTAG Project in Development (EDS) Mode

If you have clicked the <Test> button at the end of the EDS Wizard, then an EDS (Development
Mode) session will now launch.

The following default settings will be used:

• SLOW JTAG speed at maximum SLOW frequency

• Single JTAG device (no JTAG Chain)

• Target System not powered by programmer (unless enabled during the EDS Wizard)

• The default JTAG pre-programming state machine will be used.

• The Configuration Fuse Write is disabled (can be enabled in EDS)

• The Security Fuse Write is disabled (can be enabled in EDS)

At this stage there are still a few parameters which may need to be set up / checked before the

programmer will communicate with the Target Device on the Target Board.

Please follow the instructions in the next sections which explain how to set up the:

• JTAG Frequency

• JTAG chain settings

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 37

3.5 JTAG Frequency

The JTAG Frequency must be set up before any programming operation can take place.

To set up the JTAG Frequency, select the <JTAG Settings> tab.

There are two choices of JTAG frequency setting:

i. Slow JTAG (default setting)

• Selecting the SLOW JTAG option allows you to specify a JTAG frequency from 30 kHz up the

maximum SLOW JTAG frequency.

• This option should be used if there are reliability problems with JTAG programming using the

‘FAST JTAG’ option. If the JTAG frequency is slowed down, the reliability of programming

often increases.

ii. FAST JTAG

• This option is now available on most Equinox ISP programmers.

• If the programmer is a PPM3-MK2 or PPM4-MK1, then the programmer must be fitted with

either the EQ-SFM-MAX-V1.2 or EQ-SFM-MAX-V1.3 Special Function Module.

• Selecting the ‘FAST JTAG’ option selects a single high-speed JTAG frequency which is fixed

for the selected programmer.

• This option should be tried to see if reliable programming of the Target System is possible. If

programming proves to be unreliable, then try using the ‘SLOW JTAG’ instead.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 38

3.6 JTAG Device Chain settings

3.6.1 Overview

It is possible to set up a Programming Project so that the programmer is able to program an Atmel

ATmega microcontroller when the device is part of a so-called ‘JTAG Chain’. This is where the

Target AVR Device is connected on a shared JTAG Bus in a ‘JTAG Chain’ configuration. The AVR

microcontroller can be in any position in the ‘JTAG Chain’ and the chain can also contain other JTAG

devices which are not AVR microcontrollers. The data is shifted into the first device in the chain via

the TDI pin and is then output on the TDO pin which connects to the TDI pin of the next device in the

chain. In this manner, the JTAG bitstream is shifted through all the JTAG devices in the chain until it

comes out of the TDO pin of the last device in the chain which connects back to the TDO pin of the

programmer.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 39

3.6.2 JTAG Chain settings

To set up the position of the Target AVR Device in a JTAG Chain, select the <JTAG Settings> tab.

i. Single JTAG Device

If the programmer is only connected to ONE JTAG device, then you can leave all the settings as their

default value of ‘0’. This means the Target Device is the first and only device in the JTAG Chain.

ii. Device is part of a JTAG Chain

If the Target Device to be programmed is connected so it is part of a JTAG chain, then it is necessary

to specify the number of ‘JTAG devices’ and ‘Instruction Bits’ both BEFORE and AFTER the

Target Device in the Chain – see example JTAG Chain below.

3.6.3 JTAG Chain – Devices BEFORE / AFTER parameters

In order to program the Target JTAG Device, the programmer needs to know the physical position of

the Target Device in the JTAG Chain.

• In the ‘Devices BEFORE’ field, enter the number of JTAG devices BEFORE the Target

Device in the JTAG Chain. If the Target device is the first device in the chain, enter ‘0’.

• In the ‘Devices AFTER’ field, enter the number of JTAG devices AFTER the Target Device in

the JTAG Chain. If the Target device is the last device in the chain, enter ‘0’.

Example:

If you are trying to program ‘JTAG Device 2’ in the JTAG Chain of 3 devices, then there is 1 device

before and 1 device after the Target Device.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 40

3.6.4 JTAG Chain – Instruction Bits BEFORE / AFTER parameters

In order to program the Target Device, the programmer needs to know the total number of JTAG

‘Instruction Register’ bits contained in the JTAG devices BEFORE and AFTER the Target Device.

The programmer then pads all outgoing bit streams with the relevant numbers of dummy bits so only

the Target Device is actually accessed / programmed.

• You can find the ‘JTAG Instruction Register’ width (number of bits) in the manufacturer’s

datasheet for each JTAG device you are looking to program in the chain.

• All Atmel ATmega AVR microcontrollers have a ‘JTAG Instruction Register’ width of 4 bits.

• All Atmel ATFxxxx CPLD’s have an instruction width of 8 bits.

3.6.5 Calculating the ‘Bits Before’ value

To calculate the ‘Bits Before’ value:

• Find out the ‘JTAG Instruction Register’ width (number of bits) in the manufacturers

datasheet for each JTAG device you are looking to program in the chain.

• Add together all the ‘JTAG Instruction Register’ widths for JTAG devices BEFORE the

Target Device

• Enter this value in the ‘Bits BEFORE’ field

Example:

• In our example JTAG Chain with 3 AVR devices, each AVR device will have a ‘JTAG

Instruction Register’ width of 4 bits.

• If you are trying to program ‘JTAG Device 2’ in the JTAG Chain of 3 devices, then there is 1

AVR device before Device 2 so the ‘Bits BEFORE’ field should be set to 4.

3.6.6 Calculating the ‘Bits After’ value

To calculate the ‘Bits After’ value:

• Find out the ‘JTAG Instruction Register’ width (number of bits) in the manufacturers

datasheet for each JTAG device you are looking to program in the chain.

• Add together all the ‘JTAG Instruction Register’ widths for JTAG devices AFTER the Target

Device

• Enter this value in the ‘Bits AFTER’ field

Example:

• In our example JTAG Chain with 3 AVR devices, each AVR device will have a ‘JTAG

Instruction Register’ width of 4 bits.

• If you are trying to program ‘JTAG Device 2’ in the JTAG Chain of 3 devices, then there is 1

AVR device after Device 2 so the ‘Bits After’ field should be set to 4.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 41

3.6.7 Summary of the JTAG Chain settings

Here are the settings to program ’Device 2’ in the 3 device JTAG chain:

• There is one AVR device BEFORE ‘Device 2’ and one AFTER it.

• Every AVR device has an ‘JTAG Instruction Register width’ of 4 bits, so there are ‘4 bits

before’ and ‘4 bits after’ the target device - ‘Device 2’.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 42

3.7 Testing JTAG communication with the Target Chip

To make sure that the programmer can communicate to the Target JTAG device, try reading back the

Device Signature as follows:

• Select the <FLASH> tab

• Locate the <Check Sig> button on the right-hand side of the screen and click it.

� The programmer will now try to communicate with the Target Chip via the JTAG Interface

� If the Target Chip responds correctly, then EDS will report ‘Signature Read: Pass’.

� If the Target Chip does not respond, then EDS will report either:

i. Cannot enter programming mode

If you receive this error, please check the following:

• The JTAG connections between the programmer and the Target System are correct.

• There is definitely power applied to the Target System and to all the JTAG devices if the

Target Device is part of a JTAG chain.

• The ‘JTAG Chain’ settings are correct for the Target Device being programmed.

• Try slowing down the ‘JTAG Frequency’ and then try to check the Device Signature again.

ii. ‘Signature Read: Fail’.

If you receive this error, please check the following:

• Make sure there are no series resistors in-line with any of the JTAG signal lines

• Make sure there are no capacitors on any of the JTAG signal lines

• Make sure the total length of the JTAG ISP cabling is no more than 200 cm

• The ‘JTAG Chain’ settings are correct for the Target Device being programmed.

• Try slowing down the ‘JTAG Frequency’ and then try to check the Device Signature again.

• If the Signature looks like a valid signature, make sure that you have selected the correct

JTAG Device in the chain. It is possible that the programmer is actually communicating with a

different device by mistake and hence reading the wrong signature.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 43

3.8 Programming the FLASH Area

These instructions describe how to program the contents of a file into the FLASH area of the Target
Device:

• Select the <FLASH> tab

• If you have not already selected a data file to program, click the ‘Edit buffer’ check box and

then click the <Load> button to select a suitable Binary of Intel Hex file.

• The contents of the specified file should now be displayed in the Buffer Window.

• Click the <Write> button

• EDS will automatically perform a Chip Erase by default which will erase the entire FLASH

before programming any data into it.

• Select the address range you wish to program.

• EDS will automatically use the ‘Start’ and ‘End’ address of the FLASH input file unless

otherwise specified. This reduces the total data actually programmed to the number of bytes in

the input file rounded to the end of the nearest FLASH Page.

• If you want to program the entire FLASH range, click the <Entire Device> button.

• Click <OK> to program the FLASH of the Target Chip.

• The programmer should now start to program the chip.

• The BUSY LED will illuminate on the programmer.

• The programmer will program the contents of the Buffer Window into the FLASH area of the

Target Device.

• Each block of data is programmed and then verified so if a failure occurs it will be notified

immediately.

• To verify that the data has been programmed correctly, click the <Verify> button.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 44

3.9 Programming the EEPROM Area

These instructions describe how to program the contents of a file into the EEPROM area of the Target
Device.

Important note:

In JTAG ISP mode, an EEPROM location must contain 0xFF before it can be programmed to any

other value. This requires a ‘Chip Erase’ operation to clear all locations to the value 0xFF.

To program the EEPROM area:

• Select the <EEPROM> tab

• If you have not already selected a data file to program, click the ‘Edit buffer’ check box and

then click the <Load> button to select a suitable Binary of Intel Hex file.

• The contents of the specified file should now be displayed in the Buffer Window.

• Click the <Write> button

• Select the address range you wish to program

• EDS will automatically use the ‘Start’ and ‘End’ address of the EEPROM input file unless

otherwise specified. This reduces the total data actually programmed to the number of bytes in

the input file rounded to the end of the nearest EEPROM Page.

• If you want to program the entire EEPROM range, click the <Entire Device> button.

• The EEPROM address range which you are trying to program must contain 0xFF otherwise

the programmer will be unable to program the bytes.

• Click <OK> to program the EEPROM of the Target Chip.

• The programmer should now start to program the chip.

• The BUSY LED will illuminate on the programmer.

• The programmer will program the contents of the Buffer Window into the EEPROM area of the

Target Device.

• The EEPROM data is programmed in pages of either 4 or 8 bytes and then verified so if a

failure occurs it will be notified immediately.

If EDS reports an ‘EEPROM programming error’, please check the following:

• Make sure that address range in the EEPROM which is being programmed contains the value

0xFF before the programming operation is started.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 45

• This may require a Chip Erase operation to be performed because in JTAG Mode an

EEPROM Page does NOT get automatically erased during a program operation.

• To Erase the EEPROM area to value 0xFF, you may need to set the ‘EESAVE’ fuse to a ‘1’

and then perform a Chip Erase operation.

3.10 Erasing the FLASH / EEPROM area

It is possible to erase the FLASH and / or EEPROM area of a Target Device by clicking the <Erase>

button. This will also erase the Security Lock Bits changing all the Lock Bit values from ‘0’ to ‘1’. The

Configuration Fuses are not affected by a Chip Erase operation.

3.10.1 Erasing the FLASH area

The only way to erase the FLASH area of the Target Device is to use the ‘Chip Erase’ command:

• Select the <FLASH> tab

• Click the <Erase> button

• This will send the ‘Chip Erase’ command to the Target Device.

• The Target Device will then erase the FLASH (and EEPROM as long as the EESAVE flag is

not set to 0)

• To confirm that the FLASH / EEPROM is definitely blank, you can choose to perform a Blank

Check operation.

3.10.2 Erasing the EEPROM area – special considerations

The only way to erase the EEPROM area of the Target Device in JTAG mode is to use the ‘Chip

Erase’ command:

• Select the <EEPROM> tab

• Click the <Erase> button

• This will send the ‘Chip Erase’ command to the Target Device.

• The Target Device will then automatically erase the FLASH followed by the EEPROM areas.

• The EEPROM area will only be erased if the EESAVE flag is set to ‘1’.

• To confirm that the FLASH / EEPROM is definitely blank, you can choose to perform a Blank

Check operation.

• If the EEPROM is still not blank after the Erase Operation, check that the EESAVE fuse is

definitely set to ‘1’.

Important note:

In JTAG ISP mode only, it is not possible for the programmer to write any bit of EEPROM from a ‘1’

to a ‘0’. This means that each EEPROM location must contain 0xFF before it can be programmed to

any other value. This requires a Chip Erase operation to clear all locations to the value 0xFF.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 46

3.11 Programming the Configuration Fuses

3.11.1 Overview

The Configuration Fuses of an Atmel AVR device can be programmed / read using the <Fuses> tab.

Instructions:

• Select the <Fuses> tab

• If this is a new EDS project, then the Fuses will be disabled.

• Check the ‘Program Post-Erase Fuse Bits’ box � the Fuses can now be programmed

• The values of the Fuses which could be programmed into the Target Chip are shown in the

‘PC Fuse State’ column. The initial Fuse values are the default Fuse values for a virgin chip.

• The ‘Target Fuse State’ column displays the current value of the Fuses of the actual Target

Device. They are initially set to ‘?’ until the first read or write operation is performed.

• The Fuse Hex values are shown for the ‘PC Fuse State’ at the bottom of the screen.

• A red ‘x’ next to a fuse indicates a ‘Dangerous Fuse’. Programming one of these fuses

incorrectly could result in the chip no longer responding to the programmer.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 47

3.11.2 Reading the Fuses from a Target Device

To read the Fuse Values from a Target Device:

• Click the <Read> button

• The Hex values of the ‘Fuse Bytes’ which are read back are displayed as follows:

• The Fuse values from the Target Device are now displayed in the ‘Target Fuse State’

column.

3.11.3 Verifying the Fuses of a Target Device

To verify the Fuse Values in a Target Device with the Fuse Values in the ‘PC Fuse State’ column:

• Click the <Verify> button

• Any differences in the Fuse Values between the PC settings and the Target Device setting will

now be displayed.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 48

3.11.4 Writing the Fuses into a Target Device

• To program the Fuses values in the ‘PC Fuse State’ column into the Target Device, click the
<Write> button

• If there are any ‘Dangerous Fuses’ in the list, then the following warning will be displayed:

• !!! WARNING !!! If you choose to program e.g. the JTAGEN Fuse to a ‘1’ (unprogrammed),

then the chip will no longer respond the JTAG ISP programming.

• Click <Yes> to allow programming of the selected Fuse

• Click <All> to skip all fuse warning messages and program all the fuses

• The programmer will now program all the fuses at the same time and then read them back and

verify them with the values in the ‘PC Fuse State’ column.

• The programmer will then report a PASS or FAIL for programming the Fuses.

3.11.5 Using a ‘Fuse File’ to import Fuse settings into a project

It is possible to export the ‘Fuse Values’ for a particular device to a so-called ‘Fuse File’ so that a

single copy of the fuses is stored in one place. This ‘Fuse File’ can then be shared amongst many

projects if required. See section 4 for further details about using ‘Fuse Files’ .

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 49

3.12 Programming the Security Fuses

3.12.1 Overview

The Security Fuses of an Atmel AVR device can be programmed / read using the

<Security Fuses> tab.

Instructions:

• Select the <Security Fuses> tab

• If this is a new EDS project, then the Security Fuses will be disabled.

• Check the ‘Program Device Security Fuses’ box � the Security Fuses can now be

programmed

• The values of the Security Fuse values which could be programmed into the Target Chip are

shown in the ‘PC Fuse State’ column. The initial Fuse values are the default Fuse values for a

virgin chip which usually represents an ‘unlocked’ chip.

• The ‘Target Fuse State’ column displays the current value of the Fuses of the actual Target

Device. They are initially set to ‘?’ until the first read or write operation is performed.

• The Fuse Hex values are shown for the ‘PC Fuse State’ at the bottom of the screen.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 50

3.12.2 Reading the Security Fuses from a Target Device

To read the Security Fuse Values from a Target Device:

• Click the <Read> button

• The Hex values of the ‘Fuse Bytes’ which are read back are displayed as follows:

• The Security Fuse values from the Target Device are now displayed in the ‘Target Fuse State’

column.

3.12.3 Verifying the Fuses of a Target Device

To verify the Security Fuse Values in a Target Device with the Fuse Values in the ‘PC Fuse State’
column:

• Click the <Verify> button

• Any differences in the Fuse Values between the PC settings and the Target Device setting will

now be displayed.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 51

3.12.4 Writing the Security Fuses into a Target Device

• To stop anyone from reading / copying the contents of an AVR device, it is usual practice to

‘Lock’ the device at the end of the programming sequence.

• To lock the FLASH and EEPROM from being read back, set the ‘LB1’ and ‘LB2’ Lock Bits to

‘0’.

• To program the Fuses values in the ‘PC Fuse State’ column into the Target Device, click the

<Write> button

• The programmer will now program all the Security Fuses at the same time and then read them

back and verify them with the values in the ‘PC Fuse State’ column.

• The programmer will then report a PASS or FAIL for programming of the Security Fuses.

• The Target Device is now locked

Please note:

• Once the Lock Bits have been programmed on an AVR Device, it is then no longer possible to

read or re-program the FLASH or EEPROM memory areas.

• The Configuration Fuses and Security Fuses can usually still be read from a Target Device

even if the device is locked.

3.12.5 Erasing the Security Fuses

The only way to change a Security Fuse from a ‘0’ to a ‘1’ is to perform a ‘Chip Erase’ operation.

This will erase the FLASH / EEPROM and then finally erase the Security Fuses and set them back to

a value of ‘1’.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 52

3.13 Internal Oscillator Calibration – Factory OSCAL Byte

3.13.1 Overview

Every Atmel AVR microcontroller features an ‘Internal RC Oscillator’ which provides a clock source

for the device when no external clock is present. This oscillator has been ‘factory calibrated’ by

Atmel and the so-called ‘OSCAL Factory Calibration Byte’ can be found in the ‘Signature Row’ of

the AVR device. With older AVR devices, the external programmer must read this OSCAL byte from

the ‘Signature Row’ and then write it into either the FLASH or EEPROM of the target device. It is

then the responsibility of the customer’s firmware application to transfer the byte from FLASH /

EEPROM into the AVR OSCAL register when the firmware runs. This forces the ‘Internal RC

Oscillator’ to run at the factory calibrated frequency.

3.13.2 Reading / writing the Oscillator Calibration Byte in EDS mode

It is possible to read back the value of the ’OSCAL Factory Calibration Byte’ for each of the

available internal oscillators using EDS – Development Mode.

Instructions:

• Launch your project in EDS

• Select the <Target Oscillator> tab

• Click the ‘Internal RC Oscillator’ radio button – see screenshot below

• To read the ’OSCAL Factory Calibration Byte’ for the selected ‘Internal Oscillator’, click

the <Read Calibration Byte> button.

� The ’OSCAL Factory Calibration Byte’ is displayed.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 53

• To set the project up to program the ’OSCAL Factory Calibration Byte’ into the FLASH or

EEPROM

• Tick the ‘Write Calibration Byte to:’

• Select the FLASH or EEPROM area as required

• Enter the address to program the byte into

• When programming the byte into FLASH, the programmer will actually program the byte twice

into a WORD.

• Click the <Read Calibration Byte> button.

� The read ’OSCAL Factory Calibration Byte’ is displayed.

• You can now choose <Yes> to program the ’OSCAL Factory Calibration Byte’ back into the
specified address in FLASH or EEPROM.

• Click <OK>

• The ’OSCAL Factory Calibration Byte’ is now programmed into addresses 0x1FFFE and

0x1FFFF of the FLASH area.

• This can be confirmed by reading back the FLASH area and it shows the two copies of the

byte in the top two bytes.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 54

3.13.3 Writing the Oscillator Calibration Byte in STANDALONE mode

It is possible to get the programmer to automatically read the ’OSCAL Factory Calibration Byte’ and

program it into a specified location in FLASH or EEPROM using a Standalone Project. This is ideal for

production environments where the programmer is used without a PC.

Instructions:

• Follow the instructions in the previous section to set up the address into which the ’OSCAL

Factory Calibration Byte’ is to be programmed.

• Make sure that your FLASH or EEPROM data files to not also write data to the same location

where the ’OSCAL Factory Calibration Byte’ is to be programmed

• Compile the project and upload it to the programmer.

• When the project is executed, it will perform the other actions specified in the project and then

automatically read the ’OSCAL Factory Calibration Byte’ and write it into the specified

address in FLASH or EEPROM.

3.14 Exporting an EDS Project to a Standalone Project

Once you have fully tested your EDS Development Project, it is possible to add the project to a

Project Collection and then upload it to a programmer as a so-called ‘Standalone Project’. The

project can then be executed on a programmer without requiring any form of PC control.

Please follow the instructions detailed in Section 6 to upload your EDS project to a programmer.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 55

4.0 Exporting / Importing Fuse Settings to /

from an Equinox Fuse File

4.1 Overview

One of the new powerful features of EQTools is the ability to export the ‘Fuse Settings’ for a

Programming Project to a Fuse File (*.eff). This allows the settings for all the fuses to be contained in

one Fuse File which can then be imported into any of the Fuse tabs in Project Manager or in the

<Fuses> tab in EDS. In this way, the values of all the Fuses for a particular project can be shared

with other projects. This helps to ensure that the correct fuse values are specified in all projects.

4.2 Exporting the Fuse Settings to a Fuse File

To export the settings of the ‘Local Fuses’ column to a fuse File:

• Select the EDS <Fuses> Tab

• Set up the ‘Local Fuses’ to the correct values for your Target Device.

• Click the <Export> button � a file browser is displayed.

• Enter a suitable name for your Fuse File eg. project_fuses.eff

• Click <Save> � The ‘Local Fuses’ column is transferred to your specified Fuse File (*.eff).

4.3 Copying the Fuses from a Target Device

To copy the Fuses from the Target Device to a Fuse File:

• Select the EDS <Fuses> Tab

• Click the <Read> button

� the Fuses are read from the Target Device and are then displayed in the ‘Target State’

column.

• Click the <<Copy button

� the Fuse settings read from the Target Device are copied into the ‘Local State’ fuse

column.

• Click the <Export> button � a file browser is displayed.

• Enter a suitable name for your Fuse File eg. project_fuses.eff

• Click <Save> � The ‘Local Fuses’ column is transferred to your specified Fuse File (*.eff).

4.4 Importing the Fuse Settings from a Fuse File

To import the settings of the ‘Local Fuses’ column from a Fuse File:

• Select the EDS <Fuses> Tab

• Click the <Import> button � a file browser appears

• Browse to and select your Fuse File (*.eff)

� The Fuse settings are then automatically copied from the Fuse File to the ‘Local Fuses’

column.

• To program these settings into a Target Device, click <Write>.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 56

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 57

5.0 Importing Fuse Settings in HEX format

from AVR Studio

5.1 Overview

If the original firmware for your project has been developed using the Atmel ‘AVR Studio’ software,

then it is likely that both the AVR ‘Configuration Fuse settings’ and the ‘Security Fuse Settings’

are defined as so-called ‘Hex Fuse Bytes’. This is the raw version of the fuses where each ‘Hex

Fuse Byte’ can represent up to 8 individual ‘Boolean Fuses’. It is possible to import the ‘Hex Fuse

Bytes’ from AVR Studio into an EQTools project by following the instructions in the next section.

5.2 Finding the AVR Studio ‘Hex Fuse Values’

In the Atmel ‘AVR Studio’ software, the ‘Configuration Fuse settings’ for your project are displayed

on the <Fuses> tab – see screenshot below.

The ‘AVR Studio’ software displays a high-level overview of the fuses, grouping similar fuses

together with more meaningful group names eg. ‘BODELEVEL’ is made up of two fuses:

BODLEVEL0 and BODLEV1 and the fuse ‘SUT_CKSEL’ actually represents the following six

Boolean fuses: SUT0, SUT1, CKSEL0, CKSEL1, CKSEL2, CKSEL3.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 58

These Fuse values are then converted by AVR Studio into ’Hex Fuse Bytes’. For AVR

microcontrollers, the ‘Hex Fuse Bytes’ are called ‘LOW’, ‘HIGH’ and ‘EXTENDED’ – see

screenshot from AVR Studio above.

In this example, the ‘Hex Fuse Bytes’ are as follows:
EXTENDED: 0xFF
HIGH: 0xA9
LOW: 0x42

5.3 Importing the AVR Studio ‘Hex Fuse Values’ into EQTools

It is possible to import the AVR ‘Hex Fuse Bytes’ from AVR Studio into EQTools. This functionality

requires that EQTools build 927 or above is installed.

Instructions:

1. Launch your project in EDS (Development Mode)

� Launch your project in EDS (Development Mode) and then select the <Fuses> tab.

• The default ‘library’ settings for the Fuses are displayed in the ‘PC Fuse State’ column. These

fuse values represent a virgin AVR device which has never been programmed before.

• The ‘Local Fuse Values’ in Hex format are displayed at the bottom of the window. These

values represent the current settings of the fuses in the ‘PC Fuse State’ column.

• The ‘Local Fuse Values’ are displayed in the following order: LOW, HIGH, EXTENDED

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 59

2. Click the <Enter Hex> button

• The ‘Enter Fuse Values’ dialog box is displayed:

• The Hex values displayed as default are the values corresponding to the default Fuse Settings

already specified in EQTools.

• Enter the ‘Hex Fuse Bytes’ from AVR Studio in the relevant Fuse Value fields: LOW, HIGH,

EXTENDED. These fields correspond to the same fuse field values in AVR Studio – see

example below.

From AVR Studio – Fuses tab:

In this example, ‘Hex Fuse Bytes’ are as
follows:
EXTENDED: 0xFF
HIGH: 0xA9
LOW: 0x42

Enter into EQTools – Enter Hex values…..

• Click the <OK> button to accept the Fuse
values

• EQTools will then convert these bytes into
the Individual Boolean Fuse values.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 60

� The Hex values which you entered are now converted to the corresponding individual Boolean
fuses for each Fuse Byte.

• The ‘Local Fuse Values’ represent the ‘Hex Fuse Values’ and they should have the same

values as the Fuse Bytes specified in the ‘AVR Studio’ project.

3. Export the ‘PC State Fuses’ to a Fuse File

It is possible to export these Fuse Settings to a ‘Fuse File’ as follows:

• Click the <Export> button

• Save the fuse settings with a suitable name e.g. ATmega169_JTAG_Fuses.eff

4. Read the fuses from the Fuse file

• Once you have exported the Fuse Settings to a Fuse File, you can then include these Fuse

Settings in any project.

• In EDS, on the <Fuses> tab, tick the ‘Read from Fuse File’ check box and then browse to

and select your Fuse File.

• The project will then automatically use the Fuse Settings in the specified Fuse File.

• The Fuse File can also be used by any other project allowing the fuse values to be shared

between many projects if required.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 61

5.4 Importing the AVR Studio ‘Hex Security Fuse Values’ into
EQTools

In AVR Studio, the ‘Security Fuse settings’ for your project are displayed on the <Lock Bits> tab

and will be defined as one or more ‘Hex Security / Lock Bytes’. This is the raw version of the fuses

where each ‘Hex Security Fuse Byte’ can represent up to 8 individual ‘Boolean Fuses’.

It is possible to import the AVR ‘Hex Security Fuse Bytes’ from AVR Studio into EQTools. This

functionality requires that EQTools build 927 or above is installed.

1. Launch your project in EDS (Development Mode)

• Launch your project in EDS (Development Mode) and then select the <Security> tab.

• The default ‘library’ settings for the Fuses are displayed in the ‘PC Fuse State’ column.

• These fuse values represent a virgin AVR device which has never been programmed before

which should be “unlocked” ie all Lock Bits are set to ‘1’.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 62

2. Click the <Enter Hex> button

• The ‘Enter Fuse Values’ dialog box is displayed:

• The value(s) displayed as default are the values corresponding to the individual Boolean Fuse

Settings already specified in EQTools.

• Enter the ‘Security Hex Fuse Byte(s)’ from AVR Studio in the relevant Fuse Value field(s).

• Click <OK> to convert the Hex value(s) to Boolean fuses.

• Click <OK> � the individual Boolean Security fuses are now displayed:

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 63

3. Export Security Fuses to a Fuse File

• Click <Export> and then save the Security Fuses to a Fuse File called

eg. ATmega169_Security.eff.

• This file can then be automatically read back into your programming project by selecting

‘Read from Fuse File’ and then specifying the relevant Fuse File.

4. Reading the Security Fuses from a Fuse file

• Once you have exported the Security Fuse Settings to a Fuse File, you can then include

these Fuse Settings in any project.

• In EDS, on the <Security> tab, tick the ‘Read from Fuse File’ check box and then browse to

and select your Fuse File.

• The project will then automatically use the Fuse Settings in the specified Fuse File.

• The ‘Security Fuse File’ can also be used by any other project allowing the fuse values to be

shared between many projects if required.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 64

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 65

6.0 Creating a Standalone Programming

Project

6.1 Overview

Once you have tested your project fully in EDS (Development Mode), it is possible to then make this

project into a ‘Standalone Project’ which can be uploaded to a programmer. This single standalone

project file (*.prj) will contain all the information required to program the Target Device including

FLASH file, EEPROM file, Fuse settings, Security Settings etc.

6.2 Creating a Standalone Project from EDS (Development Mode)

In EDS (Development Mode), select the <Overview> tab

• If this is the first time the EDS Project has been uploaded to a programmer, click the

<Add Project File to a new Project Collection> button.

• If the EDS Project has already been uploaded to a programmer before, click the

<Update this project in an existing Project Collection> button.

6.3 Add Project File to a new Project Collection

When the <Add Project File to a new Project Collection> button is pressed, the EDS project will be

automatically added to a new ‘Project Collection’.

• The EDS Project will appear in a ‘Project Manager’ window.

• You will then be prompted to save the ‘Project Collection’. Choose a suitable name eg.

Test.ppc and click the <Save> button.

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 66

The Project Manager window is now displayed – see section 6.4.

6.4 Uploading a Project to a programmer

The Project Manager window displays all the projects in your Project Collection.

In this example we have only one project called ‘ATMEGA2560-JTAG’.

The ‘Unique ID’ is the ‘Project Name’ which is also the file name you saved the project with in EDS.

To upload the project to the programmer:

• Click the <Upload all projects> button

� uploads all the projects in the collection to the programmer.

or

• Click once on the project you wish to upload in the Project Manager window and then click

the <Upload selected project> button

� uploads only the selected project in the collection to the programmer.

Follow the on-screen Upload Wizard instructions to complete the uploading of the project(s) to the

programmer(s).

Application Note 105 – JTAG In-System Programming (ISP) Implementation for the Atmel AVR Microcontroller Family 67

6.5 Re-testing a Project in EDS (Development mode)

If you want to re-test a Programming Project in EDS (Development Mode), the simplest method to do

this is as follows:

• Use Project Manager to open your Project Collection (*.ppc file)

• Click once on the project which you wish to test in EDS mode. This will select the project.

• Click the <Test in EDS> button

� The selected project will now be opened in EDS (Development Mode).

• You can now test your project in EDS (Development Mode).

