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1.0 Introduction 

This application note describes how to develop and implement In-System Programming (ISP) 

support for the Atmel AVR microcontroller family using the ‘JTAG Programming Interface’. The 

document details how to make a JTAG ‘Programming Project’ which will operate on any Equinox 

ISP programmer. A full description of all connection method required to implement JTAG In-System 

Programming (ISP) of the Atmel AT90USB, AT90CAN and ATmega AVR FLASH Microcontroller is 

also discussed.  

 

1.1 Features 

The Equinox range of programmers includes solutions for development, low / mid / high volume 

production and field programming of Atmel AVR microcontrollers.  

 

General features 

• High-speed In-System Programming (ISP) support of Atmel AVR microcontrollers using the 

‘JTAG programming interface’. 

• Programming solutions for development, low / mid / high volume production and field 

programming of Atmel AVR microcontrollers 

• Programs the on-chip FLASH Memory, EEPROM Memory, Configuration Fuses and Security 

Fuses 

• Uses the Atmel AVR standard ‘JTAG Debug Interface’ port as the ISP interface  

• Very high-speed programming due to local data storage in on-board FLASH inside the 

programmer and optimised programming algorithms 

• Programmers can be used in "Standalone Mode" (no PC required) 

• Supports high-speed program / verify of the on-chip FLASH and EEPROM in a singe 

operation. 

• Supports programming of the factory calibrated ‘Oscillator Calibration Byte’  

• Optimised Erase operations for FLASH and EEPROM 

• Supports programming of non volatile ‘Configuration Fuses’  

• Supports programming of the ‘Security Fuses’ to protect code from being read out 

• Supports programming of any AVR microcontroller when placed in a ‘JTAG Chain’ (JTAG 

daisy-chain mode) 

• Supports up to 256 devices in a single ‘JTAG Chain’ 

• User-programmable ‘pre-programming state machine’ allows non-standard reset circuits to 

be supported (both reset polarity and timing can be manually adjusted) 

• User-configurable ‘JTAG frequency’ allows the JTAG signals to be matched to the target 

hardware / wiring 

• Target voltage can be measured and validated 
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JTAG chain (JTAG daisy-chained mode) 

All Equinox programmers supports programming of an Atmel AVR microcontroller when it is 

connected in a so-called ‘JTAG Chain’. 

• Supports programming of any one of up to 256 devices in a single ‘JTAG Chain’ 

• User-programmable JTAG chain settings allowing the user to set up the configuration of the 

target device in the chain. 

• Multiple AVR devices in a chain can be programmed sequentially one-after-the-other using a 

single programmer by making a separate ‘standalone project’ for each device in the chain. 

•  High-current TDI drive pin to ensure good signal integrity throughout the chain 

 

 

In ‘Development Mode’ 

All Equinox programmers can be used in ‘Development Mode’ where the programmer is controlled 

via our EDS software application running on the PC. This allows the user to control all programming 

operations under PC control and so is ideal for the initial set up and testing of programming projects. 

  

• Powerful yet simple-to-use Development Suite called ‘EDS’ 

• All aspects of programming the AVR device can be controlled from the PC using EDS 

• Erase, Program, Read or Blank Check both the FLASH and EEPROM areas under PC control 

• Program / Read back the ‘Configuration Fuses’ 

• Program / Read back the ‘Security Fuses’ 

• Program / Read back the factory calibrated ‘Oscillator Calibration Byte’ 

 

In ‘Production Mode’ 

It is all possible to use any Equinox programmer in standalone mode. In this mode, the programmer 

operates without PC control and is capable of fully programming a target device. 

 

• Programmers can be used in "Standalone Mode" (no PC required) 

• A single ‘Standalone Programming Project’ can Erase the device, program /verify the 

FLASH and EEPROM, program the ‘Configuration Fuse Bits’, program the ‘Oscillator 

Calibration Byte’ and finally program the ‘Security Fuses’ all in a single operation.  

• Up to 64 x AVR ‘Standalone Programming Projects’ can be stored inside an FS2003, 

FS2009, PPM3-MK2, PPM4-MK1 or ISPnano programmer. 

• Programmer can store multiple versions of firmware for different ‘customer product 

versions’. 

• A ‘Standalone Programming Project’ can be created from an ‘Atmel ELF File’ created by 

e.g. AVR Studio 

 

Compatibility with Atmel AVR Studio software 

• Supports importing of Fuse and Lock Hex byte settings from AVR Studio 

• Supports importing of FLASH, EEPROM, Fuse and Security settings from an ‘Atmel ELF File’ 

created by e.g. AVR Studio 
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Importing settings from Atmel ELF File supported 

• Supports importing of FLASH, EEPROM, Fuse and Security settings from an ‘Atmel ELF File’ 

created by e.g. AVR Studio 

• Allows a ‘development user’ to send a single ‘ELF File’ which can contain most of the data 

required for production.  

 

Compatibility with Atmel JTAG-ICE MK1 / MK2 Debugger 

• All Equinox programmers can support connection to the standard Atmel 10-way AVR JTAG 

IDC header connector. 

• If your Target Board already works with the Atmel JTAG-ICE MK1 / MK2 debugger, then it 

should work with any Equinox JTAG programmer. 

• All Equinox programmers must be configured with the Equinox EQTools software. They will 

not work with Atmel’s AVR Studio software. 
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1.2 Programmers supported 

All Equinox ISP Programmers are capable of supporting programming of Atmel AVR microcontrollers 

using the ‘JTAG Programming Interface’. Some programmers offer this support as standard but 

most require a ‘License upgrade’ to be purchased. Please refer to the table below for full details. 

 

Fig. 1.2 Equinox Programmer – SPI and JTAG ISP Support 

Programmer 
Picture 
 

Programmer 
Order code 

AVR SPI algorithms AVR JTAG algorithms 

 

EPSILON5(UN) 
 

Included as standard UPGRADE: 
EPSILON5-UPG3 

 

EPSILON5(AVR-
JTAG) 
 

EPSILON5-UPG17 Included as standard 

 

 

FS2003(UN) 
 

Included as standard UPGRADE: 
FS2003-UPG7 

 

 

FS2009(UN) 
 

Included as standard UPGRADE: 
FS2009-UPG7 

 

 

FS2009(AVRJTAG) 
 

FS2009-UPG17 Included as standard 

 

 

PPM3 MK2(UN) 
 

Included as standard UPGRADE: 
PPM3A1-UPG7 
+ IO-CON-3 JTAG 
Connector Module + 
SFM-MAX-V1.3 Special 
Function Module 

 

 
 

PPM4 MK1(UN) 
 
 

 

Included as standard UPGRADE: 
PPM4MK1-UPG7 
+ IO-CON-3 JTAG 
Connector Module + 
SFM-MAX-V1.3 Special 
Function Module 
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ISPnano 
Series I / II / III  
 

UPGRADE 
ISPnano-UPG17 

UPGRADE 
ISPnano-UPG7 

 

ISPnano 
Series III ATE 
 
 

UPGRADE 
ISPnano-UPG17 

UPGRADE 
ISPnano-UPG7 

 

 

ISPnano-MUX2 
ISPnano-MUX4 
ISPnano-MUX8 

UPGRADE 
ISPnano-UPG17 

UPGRADE 
ISPnano-UPG7 

 
Key: 

• UPGRADE – Chargeable license upgrade required 

 

 

1.3 Device Support 

Please refer to the latest Device Support List for the devices which are currently supported by the 
Equinox range of programmers.  
 
This can be found: 
 

1. As a Download available on the website:  
- Click on the Downloads tab. 
- Under ‘Download Type’ choose Device Support Lists / Release notes then click 

Search. 
 
2. Browsing on the Device Support tab under each product. 
 
3. In the latest version of EQTools:  

- Select  EQTools. Go to <Programmer><Create a Device Report>.  
- All programmers and devices supported are listed in this document.  
- You will need the most recent EQ-Tools build version – please refer to the website for 

further details.     
 
 
Please note: 

• As a rule of thumb, only Atmel Atmega AVR devices with 16k bytes of FLASH or greater will 
feature the JTAG Programming Interface. 

• Some ATmega devices such as the ATmega8(L) and ATmega161(L) do not have a JTAG port 
and so cannot support JTAG programming. 

• Devices with greater than 128kb of FLASH memory require a firmware upgrade to version 
3.01 or above in order to support programming of the upper 128kb. 

• It is possible to program devices connected in a ‘JTAG Chain’ using firmware 3.05 or above. 

• Please see Application Note – AN112 for instructions on updating your programmer 
firmware. 
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1.4 JTAG versus SPI algorithm 

The table below compares the JTAG and SPI programming algorithms for the Atmel AVR family of 

microcontrollers. 

 

Parameter 
 

SPI algorithm JTAG algorithm Comments 

Programming speed Much slower than 
JTAG 

x3 or x4 times faster 
than SPI 

Depends on SPI / JTAG 
clock frequencies 

Programming reliability Depends on AVR 
clock frequency 

Very good  

In-System Debugging Not possible Yes – use Atmel JTAG-
ICE debugger 

JTAG port normally 
used during 
development phase 

Boundary Scan Testing Not possible Yes – requires external 
JTAG tester 

Very useful for 
production testing. 

Multiple AVR 
programming on same 
Target Board 

Very difficult in SPI 
mode 

Possible to daisy-chain 
multiple AVR devices 
in a JTAG chain. 

Only one device can be 
programmed at a time. 

EEPROM programming 
speed 

Slow on most 
devices as 1 byte 
per page 

x4 or x8 times faster as 
programmed in 4 or 8 
byte pages  

Some newer AVR 
devices do have ‘Page 
Mode’ programming. 

EEPROM Erase cycle Each EEPROM byte 
can be individually 
erased 

A Chip Erase is 
required to erase any 
non 0xFF location 

Cannot use JTAG mode 
to re-program EEPROM 
without erasing FLASH. 

Programming pins 
required 

3 + RESET 
MOSI, MISO, SCK 

4 + RESET 
TDI, TDO, TCK, TMS 

RESET pin is required 
for both SPI and JTAG 

Programming pins can 
be used for user I/O? 

Yes Not recommended Try not to put other 
components on pins. 

RESET pin control 
required? 

Yes Yes The RESET pin is 
essential for SPI and 
JTAG operation. 

Programming 
dependent on AVR 
clock settings? 

Programming will 
fail if a valid clock is 
not applied to the 
AVR device. 

Programming should 
always work in JTAG 
mode even if the AVR 
does not have a valid 
clock source. 

In SPI mode, an AVR 
device can be rendered 
no longer programmable 
by selecting an incorrect 
clock source. 

Possible to lock out SPI 
/ JTAG port 

Yes – but only from 
JTAG mode 

Yes – from SPI and 
JTAG mode 

Need to unset the 
SPIEN or JTAGEN fuses 

Scramble AVR fuses by 
accident? 

Very easy to do by 
mistake!!! 

Most fuse issues can 
be recovered in JTAG 
mode. 

Use JTAG mode to 
recover a device with 
scrambled fuses. 
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1.5 JTAG Algorithm Overview 

The JTAG algorithm provides a method of performing high-speed programming of an Atmel Atmega 

AVR microcontroller. The same JTAG port can also be used for on-chip debugging of code using the 

Atmel JTAG-ICE Debugger. The advantages and disadvantages of the JTAG algorithm are detailed 

below. 

 

Advantages 

• The JTAG algorithm is approximately 3-4 times faster at programming compared to the SPI 

algorithm. 

• The programming time using JTAG for the EEPROM is significantly faster than the SPI 

algorithm because in JTAG mode a ‘Page’ of EEPROM is programmed at a time rather than a 

single byte. Each byte may take e.g. 9ms to program in SPI mode, where as a whole page of 

e.g. 4 bytes may take 9ms to program in JTAG mode. 

• The JTAG algorithm uses the same ‘JTAG Port’ as the Atmel JTAG-ICE Debugger. This 

means that the same port can be used for both debugging during the development phase and 

also programming during the production phase of the product. 

• With the JTAG algorithm, the programming clock is supplied by the programmer and JTAG 

logic inside the Target AVR device does not require any other clocking. This means that the 

chip is not dependent on the settings of the ‘Clock Selection Fuses’ in JTAG Mode. 

• In JTAG mode is it possible to change the ‘Clock Selection Fuses’ to any value and still 

program the chip. (with the exception of the ‘JTAGEN’ Fuse) 

• It is possible to use the JTAG port of the Target Microcontroller to perform in-circuit testing of 

the microcontroller and surrounding circuitry. This testing is performed by shifting Test Data 

through the JTAG port of the Target Microcontroller. A JTAG Test System is required to 

perform this testing. It is not supported by any Equinox Programmer or the Atmel JTAG ICE. 

• It is possible to daisy-chain multiple JTAG devices on the JTAG bus in a so-called ‘JTAG 

Chain’ and then select to program a particular device in the chain. This functionality is now 

supported by Equinox programmers running firmware 3.05 and above. 

 

Disadvantages 

• The JTAG Programming Interface uses 5 pins: TCK, TDI, TDO, TMS and RESET. 

• The JTAG pins of the microcontroller are not designed for off-board use and should not be 

shared with any other circuitry on Target Board. This means that the JTAG port pins must be 

dedicated for programming / debugging. 

• In JTAG mode the EEPROM is divided into ‘Pages’ rather than ‘Single Bytes’. It is therefore 

more complicated to program a single byte in the EEPROM as the entire page (usually 4 or 8 

bytes) must be read back and then the single byte overlaid on top of this data and finally the 

entire page is then re-programmed back into the EEPROM. 

• In JTAG Mode, it is not possible to re-program any location in the EEPROM which is not 0xFF 

without first performing a Chip Erase operation. This means that if the EEPROM already 

contains any data, it is not possible to re-program this data without erasing the entire chip first. 
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1.6 SPI Algorithm Overview 

The SPI algorithm is a simple 3-wire interface which can be used to program most AVR 

Microcontrollers. The advantages and disadvantages of this algorithm are detailed below. 

 

Advantages 

• The SPI algorithm is supported by almost all Atmel AVR microcontrollers including AT90S, 

AT90CANxxx, ATtiny and ATmega devices. This means that the same Programming Interface 

can be used on any products containing any AVR microcontroller. 

• The SPI Programming Interface uses only 3 SPI pins (MOSI, MISO, SCK) and the RESET pin. 

• The SPI pins can be used to drive other circuitry such as LED’s and switches on the Target 

Board as well as being used for ISP purposes. However, this will require careful design on the 

Target Board to ensure that the programming signals are not compromised.  

• In SPI Mode, it is possible to reprogram a single byte of the EEPROM area without having to 

perform a Chip Erase first. 

• The SPI algorithms are supported as standard on all Equinox ISP Programmers. 

 

Disadvantages 

• In general terms, the SPI algorithm is 3-4 times slower than the JTAG algorithm. 

• When using the SPI algorithm, the clock used during programming is supplied from either the 

AVR Internal RC Oscillator or from an external crystal / resonator. The programming SPI 

speed is completely dependent on the speed of this oscillator. 

• If the oscillator speed is slow, then the maximum SPI speed is seriously limited and the overall 

programming will be very slow. 

• If the AVR ‘Clock Selection Fuses’ are incorrectly programmed in SPI mode, then the chip 

may no longer have a valid oscillator and so will not respond to the programmer. This can 

render the chip non-programmable except by physically removing it from the Target Board and 

using either a JTAG or Parallel programmer to resurrect the correct fuse settings. 
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1.7 Upgrading your Equinox Programmer to support JTAG 

The AVR JTAG algorithms are not supported as standard on any Equinox programmers (for 

exceptions – see below*). It is necessary to purchase a ‘License Upgrade’ for AVR JTAG support 

from Equinox. Equinox will then send you a ‘JTAG Upgrade License String’ which will upgrade your 

programmer to support JTAG programming. 

 

Please note 

The following ‘Standalone programmer’ and ‘Bundle’ options have the AVR JTAG license pre-

installed, therefore these instructions are not necessary: 

• Epsilon5(AVR-JTAG) 

• EPS-AVRJTAG-BUNDLE 

• FS2009(AVR-JTAG) 

 

1.7.1 Purchasing a JTAG License 

All Equinox ISP programmers require the purchase of a ‘License Upgrade’ to enable JTAG support.  
Please see the table in section 1.1 for the relevant upgrade for your programmer. 
 

1.7.2 How do I enable the programmer for JTAG? 

To enable your programmer to support JTAG ISP programming, please purchase the relevant JTAG 
Upgrade from Equinox or an Equinox distributor: 
 

1. If you purchase the upgrade directly from Equinox 

• Equinox will email you a ‘JTAG License String’. 

• This string can be entered directly into the <Enter License> screen in EQTools. 
 

2. If you purchase the upgrade from a distributor 

• The distributor will send you the Upgrade Pack by courier. 

• Within the Upgrade Pack you will find an Upgrade Form with a Code String on it. 

• Email this Code String plus your programmer Serial Number to support@equinox-
tech.com 

• Equinox will then send you a ‘JTAG License String’ which is keyed to your 
programmer Serial Number. 

• This string can be entered directly into the <Enter License> screen in EQTools. 
 

1.7.3 Upgrading an Epsilon5, FS2003 and FS2009 to support JTAG 

To upgrade an Epsilon5, FS2003 or FS2009 programmer to support JTAG, please follow the steps 
below: 

• Order An AVR JTAG License from Equinox 

• Enter the ‘JTAG Upgrade License String’ given to you by Equinox into EQTools – see 
section 2.9.5 below. 

• Make sure you have the required version of Programmer Firmware to support the device you 
wish to program. 

• Plug the 10-way ISP cable supplied with the programmer into the ‘J8 – JTAG-10’ ISP Header 
on the programmer. 

• Connect the other end of the 10-way ISP cable to the JTAG port on your Target Board 

• You are now ready to program a Target AVR Chip via JTAG. 
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1.7.4 Upgrading a PPM3-MK2 and PPM4-MK1 Programmer to support 
JTAG 

To upgrade a PPM3-MK2 or PPM4-MK1 programmer to support JTAG, please follow the steps below: 

• Order a ‘PPM3-MK2 / PPM4-MK1 JTAG upgrade’ from Equinox Technologies 

• Enter the ‘JTAG Upgrade License String’ given to you by Equinox into EQTools – see section 
2.9.5 below. 

• The JTAG upgrade also includes a new ‘I/O Connector Module’ for the PPM3-MK2 and PPM4-
MK1 called the ‘I/O-CON-3’. This module has a JTAG 10-way header which has the same pin-
out as the JTAG-ICE. 

• It also includes the High Speed / High Current Special Function Module ‘EQ-SFM-MAX-V1.3’. 
This significantly reduces the overall programming times for many high capacity devices. For 
full instructions on fitting this module please refer to Application Note AN115 provided with 
your upgrade 

• Make sure you have the required version of Programmer Firmware to support the device you 
wish to program. 

• Plug the ‘I/O-CON-3’ module into the programmer. 

• Plug the 10-way ISP cable supplied with the programmer into the ‘JTAG’ ISP Header on the 
‘I/O-CON-3’ module. 

• Connect the other end of the 10-way ISP cable to the JTAG port on your Target Board 

• You are now ready to program a Target Chip via JTAG 
 
 

EQ-IOCON-3 

 

I/O Connector Module 3 (JTAG) – Fast Connect Version 

I/O connector module for In-System Programming (ISP) of Atmel microcontrollers 

using JTAG protocol 

 
Features: 

• Plugs into suitable Equinox programmer e.g. PPM3 or PPM4 Module 

• Atmel 10-way JTAG IDC ISP connector (same as JTAG-ICE) 

• Atmel 6-way IDC ISP Header 

• Equinox 10-way IDC ISP header 

• Single-in-line header with all programmer I/O brought out for wire-wrapping 
to bed-of-nails probe wires 

• Screw terminals for power connections 

• Target Vcc Status LED 

• Link to connect / isolate the programmer Vcc from the Target Vcc 
 

Please note 
The ‘Atmel AVR JTAG License’ (Order code: PPM3A1-UPG7 / PPM4MK1-UPG7) 
is also required to enable the PPM3 and PPM4 to program Atmel AVR devices via 
JTAG. 
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1.7.5 Entering the License String to upgrade your programmer 

Once you have received the License String from Equinox, please follow the steps below to apply the 
upgrade to your programmer: 
 

• Launch EQTools � The EQTools ‘Welcome Screen’ is displayed. 

• Close down the EQTools ‘Welcome Screen’ 

• From the top menu bar, select <Programmer><Programmer Info> 
� the Programmer Information screen is displayed 

• Click the <Enter License> button 
� The <Enter License Key> screen is displayed. 

 

 
 
Enter the License String you were sent by Equinox 

• Click <OK> 
� EQTools should acknowledge that the attached programmer has been upgraded. 

 

 
 

• Click <OK> 

• If you now check the Programmer Info screen, you should find that the entry for 
‘ATmega JTAG ISP’ is now ENABLED. 

• Your programmer is now upgraded to support JTAG programming of Atmel AVR 
Microcontrollers. 
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1.8 Other related application notes 

The table below lists the Application Notes available for all Atmel microcontroller, serial EEPROM, 

Serial FLASH and Serial DataFLASH devices.  

 

Application 
Note 

Device Family Programming 
Interface 

AN100 Atmel - AT89Sxxxx FLASH microcontrollers SPI 

AN101 Atmel - AVR FLASH microcontrollers via the SPI Interface SPI 

AN105 Atmel - AVR FLASH microcontrollers via the JTAG Interface JTAG 

AN118 Generic I2C 24xxx Serial EEPROM memories I2C 

AN122 Atmel - AT91SAM7 ARM7 FLASH microcontrollers JTAG 

AN127 Atmel – XMEGA AVR FLASH microcontrollers via the 2-wire PDI 

interface 

PDI 

AN132 Atmel ATtiny AVR microcontrollers via the TPI interface TPI 

AN133 Atmel AT45D Serial DataFlash programming SPI 

 

These application notes can be found in PDF format on the CD-ROM which was supplied with the 

programmer. You can also find the very latest versions on the “ISPnano Download Page” on the 

Equinox website. 
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2.0 JTAG Programming Algorithm 

2.1 Overview 

The ‘JTAG Programming Interface’ provides a method for both In-System Debugging (ISD) and 

In-System Programming (ISP) of Atmel ATmega AVR Microcontrollers. It uses an industry-standard 

set of signals to provide the connection between the programmer / debugger and the AVR 

microcontroller. However, the actual JTAG Header (connector) used by Atmel and Equinox is specific 

to Atmel AVR JTAG programming and will not match JTAG connectors for JTAG devices from other 

manufacturers. 

 

 
 

In the development environment…… 

 

…..The JTAG Interface can be used for In-System Debugging of the code running on the actual 

Target System. This method of operation requires the use of the Atmel ‘JTAG-ICE MK1’ or ‘JTAG-

ICE MK2’ debugger to program firmware into the FLASH of the target AVR microcontroller. Once the 

code is downloaded into FLASH, it is then possible to execute and debug this code under PC control. 

The debugger Software (AVR Studio) allows you to set breakpoints in the code, read / write memory 

locations, look at register contents etc. 

 
In the production environment…..   

 

……The JTAG Interface can be use for high-speed In-System Programming (ISP) of the Target 

AVR Microcontroller. This method of operation requires the use of any Equinox ISP Programmer 

which has been enabled to support the ‘AVR JTAG’ algorithms. 

 

The Equinox ISP Programmer range supports high-speed In-System Programming (ISP) of a single 

or multiple Atmel AVR microcontrollers on a Target Board using the 4-wire JTAG inerface. Support 

has now been added for programming of any Atmel AVR microcontroller when connected as part of a 

‘JTAG Chain’. This mode allows multiple JTAG devices to be in-system programmed using a single 

JTAG bus. 
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2.2 JTAG Features 

• Fast Programming speeds 

• Simple 4-wire JTAG bus connection + RESET signal 

• JTAG programming does not depend on the AVR oscillator frequency so JTAG programming 

will always work 

• JTAG interface is compatible with the Atmel JTAG-ICE MK2 In-System Debugger so same 

interface can be used for development and production. 

• Both single microcontroller and ‘JTAG-in-a-chain’ implementations are supported 

 

 

2.3 JTAG PCB design / ISP cable guidelines 

The following guidelines are provided for designing an ‘AVR based Target Board’ which is to be 

programmed via the JTAG interface. 

 

• Proper decoupling - Make sure the AVR microcontroller is well decoupled. 

• No JTAG in-line resistors - Avoid placing any resistors in the JTAG lines TDO, TDI, TCK, 

TMS as this can skew the waveforms so the JTAG clock is not sampled correctly. 

• No JTAG capacitors - Avoid placing any capacitors from any of the JTAG lines to 0V as this 

will slug the waveforms and probably stop JTAG working reliably. 

• JTAG pull-up resistors - It is recommended that either the Target Board or the Test Fixture 

has pull-ups e.g. 47k ohm on the JTAG signal lines. (The programmer does not have any pull-

ups) 

• RESET pin connection - Make sure that the RESET pin of the target AVR microcontroller is 

brought out to the programming header. It is essential that the programmer can control the 

RESET pin of the AVR device !!! 

• Cable length - Keep the cable length between the Target Board and the programmer as short 

as possible. e.g. no more than 15cm in length. 

• JTAG relays etc - Do not use any relays or electronics analogue switches in the JTAG signal 

lines if at all possible.  
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2.4 JTAG single-chip In-System Programming (ISP) Schematic 

The diagram below details the connections required to implement JTAG In-System Programming of a 

single Atmel ATmega AVR Microcontroller using an Equinox ISP programmer. 

 

 
Fig 2.4 – ATmega AVR – JTAG Programming Interface connections 
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ATmega AVR – JTAG Programming Interface - signal names and directions 

 

Please note: 

• The RESET connection is essential in JTAG mode. This allows the programmer to reset the 

Target Microcontroller and release the JTAG port for programming. 

• It is recommended that either the Target Board or the Test Fixture has pull-up resistors e.g. 

47k ohm on the JTAG signal lines. 
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2.5 JTAG signals – TDI, TDO, TMS, TCK 

The JTAG programming interface for AVR devices uses four data lines: TDI, TDO, TMS and TCK. 

The table below shows the relevant direction of each JTAG signal line.  

 
Programmer 
Signal Name 

Signal description Signal 
direction 
(from 
Programmer) 

Connect to 
AVR 
Microcontroller 
Pin 

Signal direction 
(from 
Microcontroller) 

PROG_TCK Test Clock Pin Output TCK Input 
PROG_TDI Test Data Input Output TDI Input 
PROG_TDO Test Data Output Input TDO Output 
PROG_TMS Test Mode Select Output TMS Input 
PROG_RESET RESET Output RESET Input 

 

When programming in JTAG mode, the programmer provides the clock to the “JTAG TAP 

Controller” inside the target AVR device. The programmer clocks data out of the ‘TDI’ pin on the 

programmer into the ‘TDI’ pin on the AVR device. 

 

 
This data is then shifted through a shift-register inside the AVR device and appears out of the ‘TDO’ 

pin on the AVR device. This bit-stream is then fed back into the programmer ‘TDO’ pin. 

 

Please note: 

• It is recommended that either the Target Board or the Test Fixture has pull-ups e.g. 47k ohm 

on the JTAG signal lines. 

• The target AVR device must drive the ‘TDO’ pin back via the ISP cable to the programmer. 

This pin is susceptible to noise and skew as the AVR only drives the pin for part of the duty-

cycle of the waveform. It may be necessary to use a stronger pull-up or some sort of buffering 

on this pin if long ISP cables are being used. 

• No in-line resistors or capacitors to 0V should be placed in any of the JTAG signal lines as 

they could skew / slug the waveforms leading to erratic programming operation.  
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2.6 AVR RESET signal 

When programming Atmel AVR devices using the JTAG Interface, it is imperative that the 

programmer can control the RESET pin of the target AVR microcontroller. It does not matter if the 

RESET signal from the programmer goes through other logic on the Target Board, as long as the 

programmer is capable of forcing the RESET pin LOW when commencing a JTAG programming 

operation. 

 

The reasons for requiring control of the RESET pin are as follows: 

 

• If any user firmware which is programmed into the target AVR device writes to any of the 

JTAG pins or sets up the ‘Data Direction Registers’ of the JTAG port incorrectly, then the 

JTAG port will no longer operate correctly and entering JTAG programming mode will fail. 

• If any user firmware which is programmed into the target AVR device happens to execute the 

AVR instruction to disable the JTAG port (usually for power consumption reasons), then the 

programmer will not be able to enter JTAG programming mode. 

• The programmer must assert the RESET pin of the target AVR microcontroller LOW when 

commencing a JTAG programming operation. This forces the AVR device to stop running 

firmware and releases / resets the JTAG port so the programmer can communicate with it. 

 

 

Warning! 

• Any AVR Target System which does not allow control of the RESET pin may be 

programmable once only via JTAG and then all subsequent attempts to enter JTAG 

programming mode may fail. 

• Once the target AVR device is in JTAG mode, the RESET pin will have no effect until JTAG 

mode has been exited. This will hold the AVR device in reset so it cannot execute code. 
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2.7 JTAG-in-a-chain In-System Programming (ISP) Schematic 

The diagram below details the connections required to implement JTAG In-System Programming of 

either a single or multiple Atmel ATmega AVR Microcontrollers which are connected in a ‘JTAG 

Chain’ arrangement.  

 

 
Fig 2.7 – ATmega AVR – JTAG Programming Interface connections 
 

 
 
 

The TDI signal is fed into the TDI input on the first JTAG Device in the chain. The data path then goes 

through the first device and comes out on the TDO pin. The TDO pin is connected to the TDI pin of 

the next JTAG Device in the chain. 

 

ATmega AVR – JTAG Programming Interface - signal names and directions 

Programmer 
Signal Name 

Signal description Signal 
direction 
(from 
Programmer) 

Connect to 
AVR 
Microcontroller 
Pin 

Signal direction 
(from 
Microcontroller) 

PROG_TCK Test Clock Pin Output TCK Input 
PROG_TDI Test Data Input Output TDI Input 
PROG_TDO Test Data Output Input TDO Output 
PROG_TMS Test Mode Select Output TMS Input 
PROG_RESET RESET Output RESET Input 

 

Please note: 

The RESET connection is essential in JTAG mode. This allows the programmer to reset the Target 

Microcontroller and release the JTAG port for programming. 
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2.8 JTAG connector compatibility with Atmel JTAG ICE MK1/MK2 

The JTAG port of an ATmega AVR Microcontroller can be used for both debugging and programming 

purposes. The Equinox ‘JTAG ISP Header’ pin-out found on all Equinox ISP Programmers uses the 

same pins as the Atmel ‘JTAG ICE MK1 / MK2 Debugger’ so it is possible to use the same 

connector / cabling for both programming and debugging. 

 

Fig. 2.8 JTAG ISP 10-way IDC Header 

Atmel 10-way JTAG IDC Header Atmel JTAG ICE MK1 or 
MK2 

Equinox ISP Programmer 

 

 

 

 
 

Important notes: 
 
1. RESET pin connection 

The RESET pin of the AVR Microcontroller must be brought out to the ISP Header. It is not actually 

required for the JTAG algorithm as the control of programming initiated via a JTAG command. 

However, the Equinox programmer / Atmel JTAG-ICE can use the RESET pin to RESET the Target 

AVR microcontroller to ensure that the AVR JTAG port is not driving any I/O pins which could cause 

contention during programming. The JTAG-ICE also needs control of the RESET pin to force the AVR 

microcontroller to execute code when in debugging mode. 
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2.9 Atmel 10-way JTAG Header (JTAG Interface) 

This connection method is suitable for interfacing any Equinox ISP Programmer to a Target System 

which features the following: 

• An Atmel device which features a JTAG ISP port e.g. ATmega128 / 64 / 32 / 16 etc. 

• Atmel 10-way IDC JTAG Header 

• The pin-out is the same as the “JTAG connector” used on the Atmel JTAG-ICE MK1 / MK2 

debuggers., STK500, STK600 and all associated Atmel STK plug-in boards.  

 

To implement this connection, simply plug the 10-way ISP cable into the JTAG ISP Header and plug 

the other end of the cable into the matching header on the Target System. 

 

Figure 2.9 - Atmel 10-way JTAG IDC Header viewed from 
above 

 

Warning! 

Connecting to the wrong ISP Header may cause 

catastrophic damage to the Programmer & Target 

System 

Pin 
No 

Programmer 
Pin name 

Programmer 
Input / 
Output 

Connect to 
pin on 
Target Device 

Description 

1 PROG_TCK O TCK JTAG TCK – Test Clock Signal pin 

Clock signal from programmer to Target 

Device JTAG port. 

2 PROG_GND P GROUND Ground Connection 

Common ground connection between 

Programmer and Target System. 

3 PROG_TDO I TDO JTAG TDO – Test Data Output pin 

Data signal from Target device JTAG port 

to programmer. 

4 PROG_VCC P TARGET_VCC 

 

Target Vcc Connection 

- Pins 4 + 7 are physically connected 

inside the programmer. 

- Connects to Vcc rail of Target System. 

- Pin referred to as VTref on Atmel JTAG-

ICE. 

5 PROG_TMS O TMS JTAG TMS – Test Mode Select pin 

Mode Select Signal from programmer to 

Target Device JTAG port. 

6 PROG_RESET O RESET Microcontroller RESET control signal 

This pin connects to the main RESET pin 

of the Target Microcontroller.  
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7 PROG_VCC P TARGET_VCC Target Vcc Connection  

- See pin 4 

- Pins 4 + 7 are physically connected 

inside the programmer. 

8 N/C O N/C Not Connected 

9 PROG_TDI O TDI JTAG TDI – Test Data Input pin 

Data signal from programmer to Target 

Device JTAG port. 

10 PROG_GND P GROUND Ground Connection 

Common ground connection between 

PROGRAMMER and Target System. 

Key 

O - Output from programmer to Target Device 

I - Input to programmer from Target Device 

P - Passive e.g. GROUND and power rails 

N/C - Not connected 
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2.10 ISPnano Programmer – JTAG connections 

The illustration below shows the location of the ‘Target ISP Connector’ port on the rear panel of the 
ISPnano Series I / II and III programmers. 

 

 

‘Target ISP Connector’ port 
 
The connector is a 16-pin bump-polarised IDC 
connector with 0.1” pin spacing. 
 
Pin 1 is the top right pin as shown in the diagram 
opposite. 

 

The table below details the connections for programming Atmel AVR microcontrollers via the JTAG 
Interface using the ISPnano programmer ‘Target ISP Connector’ port 
 . 

Pin 
No 

Programmer 
Pin name 

Programmer 
Input / 
Output 

Connect to 
pin on 
Target System 

Notes 

1 + 2 

 

TARGET_VCC P TARGET_VCC Target VCC 

 

3 + 4 TARGET_EXT_VCC P See notes. Target External VCC 

 

5 + 6 PROG_GND P Signal GROUND 

(0V) 

Signal Ground Connection 

10 Programmer I/O5 I/O Spare I/O  

11 Programmer I/O4 I/O JTAG – TMS JTAG – Test Mode Select 

12 Programmer I/O3 I/O JTAG - TCK JTAG – Clock 

13 Programmer I/O2 I/O JTAG - TDO JTAG – Data Out 

14 Programmer I/O1 I/O JTAG - TDI JTAG – Data In 

16 PROG_RESET O RESET Target RESET control pin 
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2.11 ISPnano - CONMOD Module - JTAG connections 

This section describes how to use the ‘ISPnano CONMOD Module’  to connect an  

ISPnano programmer to an ‘Atmel AVR microcontroller’ using the 4-wire JTAG interface. The 

programmer connects to the 16-way IDC port labelled (3) and the ‘Atmel AVR microcontroller’ 

connects to the 10-way IDC connector labelled (1) in the picture below. 

 

 
 
 
 
 
 

Please note: 

• The ‘Atmel JTAG’ 10-way IDC connector – marked (1) in the above picture has the same pin-

out as the standard ‘JTAG’ found on the Atmel JTAG-ICE MK1/MK2 debugger and also the 

STK500 / STK600 evaluation kits. 

• All relevant connections for JTAG are already made on the CONMOD board so there is no 

need to add any other connections to get JTAG to work. 

 

Instructions 

• Referring to the annotated picture above 

• Plug the 16-way IDC cable supplied with the programmer between the programmer ‘Target 

ISP Port’ (16-way IDC connector) and the CONMOD Module 16-way header (J7) – see arrow 

(3). 

• The ‘JTAG Port’ is the 10-way IDC connector labelled ‘Atmel JTAG’ – see arrow (1) 

• Set up the ‘Target Vcc Select’ jumper so that the programmer powers the Target Board – see 

red box marked (2) in the picture. 

 

1 2 

3 
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3.0 Creating a JTAG Programming Project 

3.1 Overview 

A Programming Project for an ‘AVR JTAG Device’ can be created in exactly the same as you would 

for an ‘SPI Device’ except that the device must now be selected from the JTAG Device Library. All 

the settings are the same except for the <Pre-Programming State Machine> and the <JTAG 

Settings>. 

 

3.2 Information required to create a JTAG Project 

The following information is required about the Target Board in order to create a JTAG Programming 
Project: 
 
# Information / data required Example 

1 AVR Device part number ATmega2561 
2 JTAG connections / connector on Target board Atmel 10-way IDC connector 
3 JTAG configuration i. Single JTAG device 

or 
ii. JTAG device is part of a ‘JTAG chain’ 

4 JTAG chain configuration parameters 
 
These parameters are required if the device to 
be programmed is part of a ‘JTAG chain’. If a 
single device is to be programmed via JTAG, 
then simply set all the ‘JTAG Chain’ 
parameters to ‘0’. 
 

• Devices before: 0 

• Devices after: 0 

• Bits before: 0 

• Bits after: 0 

5 Target device oscillator frequency e.g. 12 MHz 
6 Target System Vcc voltage e.g. 3.3V 
7 Target System maximum current consumption e.g. 100mA 
8 FLASH area ‘Program File’ Binary (*.bin) or Intel Hex (*.hex) 
9 EEPROM area ‘Data File’ Binary (*.bin) or Intel Hex (*.hex) 
10 Configuration Fuse values 

 
These fuse values describe how the 
‘Configuration Fuses’ in the ATmega device are 
to be programmed. 

i. Boolean fuse values: 
e.g. SPIEN=0, CKSEL=1, CKSEL2=0 etc 
 
or 
ii. Fuse Hex values from ‘AVR Studio’ 
e.g. 0x22 0x45 0x34 

11 Reset circuit parameters e.g. 

• Capacitor / Resistor circuit 

• Watchdog supervisor circuit 

• Voltage monitoring circuit 
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3.3 Creating an EDS (Development project) 

The simplest way to create a Programming Project for a JTAG device is to use the EDS 

(Development Mode) Wizard as follows: 

 

3.3.1 Launching EDS and selecting a Target Device 

• Launch EQTools 

• Select <Create a new Development (EDS) Project> � the EDS (Development) Wizard will 

launch 

• Click <Next> � the <Select Target Device> screen will be displayed. 

 

 
 

• Type in the ‘Device Part Number’ eg. ATmega2560 into the ‘Search for Device’ field 

� a list of all matching devices will be displayed in the box underneath. 

• Select the required device from the list and then click <OK> 

� the device is now selected. 

• On the next screen, check that the device selection and all other device parameters are 

correct 

• The project is set to automatically read and validate the ‘JTAG ID’ of the Target Device by 

default. The ‘JTAG Revision’ is not validated if the first digit of the ‘JTAG ID’ is ‘0’. 

 

 
 

• If you do not want to validate the ‘JTAG ID’, untick the ‘Read JTAG ID’ tick box. 
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• Click <Next> to advance to the next screen 

 

3.3.2 Target Oscillator Settings 

This screen allows you to set up the ‘Target Oscillator frequency’ . 

The ‘Target Oscillator frequency’ is the frequency which the Target Device is being clocked at 

during the In-System Programming Process. 

 

 
 

INTERNAL RC Oscillator 

• Many Atmel AVR devices feature both an ‘INTERNAL RC’ on-chip oscillator and also the 

ability to run from an EXTERNAL crystal or Ceramic Resonator. 

• When a virgin device from Atmel is programmed for the first time, it will usually be running 

from an INTERNAL Oscillator. 

• The frequency of the oscillator is usually set at the factory to be approximately 1MHz.  

• This INTERNAL Oscillator is ‘factory calibrated’ by Atmel – see section 3.13 for further 

details on how to use the factory calibrated OSCAL value. 

• If the Target Device is running from an INTERNAL oscillator e.g. 1MHz internal, select 

‘Internal Oscillator’ and select the internal oscillator frequency from the drop-down list. 

 

EXTERNAL Oscillator: 

• If the Target Device is running from an EXTERNAL oscillator e.g. crystal or ceramic resonator, 

select ‘External Oscillator’ and enter the oscillator frequency. This frequency should be 

written on the oscillator component itself or on the circuit schematic. 

• The ‘Programmer OP4 Clock’ can be used to clock a device which has no oscillator. This is 

not required for JTAG programming. 
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Please note: 

The Target Oscillator speed is not technically required for JTAG programming as the programmer 

provides the clock during programming. If you do not know the Oscillator Frequency, simply leave 

all settings as the default values. 

 

3.3.3 Target System – Power Supply Settings  

This screen allows you to set up the Power Supply characteristics of your Target System. 

 

 
 

i. Select the Target Voltage 

• This should be the voltage at which the Target System is being powered during the 

programming operation. 

• Set the ‘Voltage Tolerance’ to be as wide as possible e.g. 500mV to allow for power supply 

variations. If the programmer is powering the Target System, this will also give a faster power-

up time. 

• It may be possible to power just the Target Microcontroller rather than the entire Target 

System. 

 

 ii. Set up the Target Powering and current parameters 

• This option is only available for the PPM3-MK2 programmer. 

• If the programmer is to power the Target System, select <Programmer controlled Target 

Power Supply: ON> 

• Set the ‘Maximum Current’ to the maximum possible current which the Target System could 

draw from the programmer. 

• Leave all other settings as default. 
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3.3.4 Specifying the FLASH (Code) File 

This screen allows you to specify the Code (firmware) file which is to be programmed into the FLASH 

area of the Target Device. This is an optional step – you can also specify the file once you are in the 

Development Suite (EDS). 

 

 
 

 

i. Blank Check the FLASH 

• If the chip has been erased at the start of the programming cycle, then the FLASH should 

already be blank (i.e. all locations contain the value 0xFF). 

• If you want to be absolutely sure the FLASH is blank, you can enable the ‘Blank Check Flash’ 

option. This will perform a full Blank Check of the FLASH area to check that all locations are 

set to 0xFF. 

• Warning – this check can be time-consuming and will increase the overall programming time! 

 

ii. Selecting the FLASH File 

• Click the <Browse> button 

• Browse to and select the file you wish to load and then select <OK> 

• If the input file is a BINARY file then the wizard will load the data in from file starting at address 

0x0000 and continuing contiguously to the end of the file. 

• If the input file is an INTEL HEX file then the wizard will load in from file from the start address 

specified in the file to end address specified in the file.  
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3.3.5 Specifying the EEPROM (Data) File 

This screen allows you to specify the EEPROM (data) file which is to be programmed into the 

EEPROM area of the Target Device. This is an optional step – you can also specify the file once you 

are in the Development Suite (EDS). 

 

 

 
 

i. Blank Check the EEPROM 

• If the chip has been erased at the start of the programming cycle, then the EEPROM should 

already be blank (i.e. all locations contain the value 0xFF). 

• However, if the Target Device has an ‘EESAVE’ fuse and this fuse is ENABLED (EESAVE=0), 

then the EEPROM will not be erased during the Chip Erase operation. 

• If you want to be absolutely sure the EEPROM is blank, you can enable the ‘Blank Check 

EEPROM’ option. This will perform a full Blank Check of the EEPROM area to check that all 

locations are set to 0xFF. 

• Warning – this check can be time-consuming and will increase the overall programming time! 

 

ii. Selecting the EEPROM File 

• Click the <Browse> button 

• Browse to and select the file you wish to load and then select <OK> 

• If the input file is a BINARY file then the wizard will load the data in from file starting at address 

0x0000 and continuing contiguously to the end of the file. 

• If the input file is an INTEL HEX file then the wizard will load in from file from the start address 

specified in the file to end address specified in the file.  

• In JTAG Mode, the granularity of the EEPROM Memory is either 4 or 8 bytes. This means that 

the programmer will always program in blocks of 4 or 8 bytes. Your input file will therefore be 

rounded up to the nearest block of 4 or 8 bytes. 
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3.3.6 Launching EDS at the end of the EDS Wizard 

Once you reach the end of the EDS Wizard, click the <Test> button to launch the project in the 

Equinox Development Suite (EDS). 

 

 
 

Enter a name for the EDS project e.g. ATmega256 and click the <Test> button 

� your project will now launch in EDS (Development) Mode. 
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3.4 Testing a JTAG Project in Development (EDS) Mode 

If you have clicked the <Test> button at the end of the EDS Wizard, then an EDS (Development 
Mode) session will now launch. 
 

 
 

The following default settings will be used: 

• SLOW JTAG speed at maximum SLOW frequency 

• Single JTAG device (no JTAG Chain) 

• Target System not powered by programmer (unless enabled during the EDS Wizard) 

• The default JTAG pre-programming state machine will be used. 

• The Configuration Fuse Write is disabled (can be enabled in EDS) 

• The Security Fuse Write is disabled (can be enabled in EDS) 

 

At this stage there are still a few parameters which may need to be set up / checked before the 

programmer will communicate with the Target Device on the Target Board. 

 

Please follow the instructions in the next sections which explain how to set up the: 

• JTAG Frequency 

• JTAG chain settings 
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3.5 JTAG Frequency 

The JTAG Frequency must be set up before any programming operation can take place. 

 
To set up the JTAG Frequency, select the <JTAG Settings> tab. 
 

 
 

There are two choices of JTAG frequency setting: 

 

i. Slow JTAG (default setting) 

• Selecting the SLOW JTAG option allows you to specify a JTAG frequency from 30 kHz up the 

maximum SLOW JTAG frequency.  

• This option should be used if there are reliability problems with JTAG programming using the 

‘FAST JTAG’ option. If the JTAG frequency is slowed down, the reliability of programming 

often increases. 

 

ii. FAST JTAG 

• This option is now available on most Equinox ISP programmers. 

• If the programmer is a PPM3-MK2 or PPM4-MK1, then the programmer must be fitted with 

either the EQ-SFM-MAX-V1.2 or EQ-SFM-MAX-V1.3 Special Function Module.  

• Selecting the ‘FAST JTAG’ option selects a single high-speed JTAG frequency which is fixed 

for the selected programmer. 

• This option should be tried to see if reliable programming of the Target System is possible. If 

programming proves to be unreliable, then try using the ‘SLOW JTAG’ instead. 
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3.6 JTAG Device Chain settings 

3.6.1 Overview 

It is possible to set up a Programming Project so that the programmer is able to program an Atmel 

ATmega microcontroller when the device is part of a so-called ‘JTAG Chain’. This is where the 

Target AVR Device is connected on a shared JTAG Bus in a ‘JTAG Chain’ configuration. The AVR 

microcontroller can be in any position in the ‘JTAG Chain’ and the chain can also contain other JTAG 

devices which are not AVR microcontrollers. The data is shifted into the first device in the chain via 

the TDI pin and is then output on the TDO pin which connects to the TDI pin of the next device in the 

chain. In this manner, the JTAG bitstream is shifted through all the JTAG devices in the chain until it 

comes out of the TDO pin of the last device in the chain which connects back to the TDO pin of the 

programmer. 
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3.6.2 JTAG Chain settings 

To set up the position of the Target AVR Device in a JTAG Chain, select the <JTAG Settings> tab. 

 

 
 

i. Single JTAG Device 

If the programmer is only connected to ONE JTAG device, then you can leave all the settings as their 

default value of ‘0’. This means the Target Device is the first and only device in the JTAG Chain. 

 

ii. Device is part of a JTAG Chain 

If the Target Device to be programmed is connected so it is part of a JTAG chain, then it is necessary 

to specify the number of ‘JTAG devices’ and ‘Instruction Bits’ both BEFORE and AFTER the 

Target Device in the Chain – see example JTAG Chain below. 

 

 

3.6.3 JTAG Chain – Devices BEFORE / AFTER parameters 

In order to program the Target JTAG Device, the programmer needs to know the physical position of 

the Target Device in the JTAG Chain.  

 

• In the ‘Devices BEFORE’ field, enter the number of JTAG devices BEFORE the Target 

Device in the JTAG Chain. If the Target device is the first device in the chain, enter ‘0’. 

• In the ‘Devices AFTER’ field, enter the number of JTAG devices AFTER the Target Device in 

the JTAG Chain. If the Target device is the last device in the chain, enter ‘0’. 

 

Example: 

If you are trying to program ‘JTAG Device 2’ in the JTAG Chain of 3 devices, then there is 1 device 

before and 1 device after the Target Device. 
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3.6.4 JTAG Chain – Instruction Bits BEFORE / AFTER parameters 

In order to program the Target Device, the programmer needs to know the total number of JTAG 

‘Instruction Register’ bits contained in the JTAG devices BEFORE and AFTER the Target Device.  

The programmer then pads all outgoing bit streams with the relevant numbers of dummy bits so only 

the Target Device is actually accessed / programmed. 

 

• You can find the ‘JTAG Instruction Register’ width (number of bits) in the manufacturer’s 

datasheet for each JTAG device you are looking to program in the chain. 

• All Atmel ATmega AVR microcontrollers have a ‘JTAG Instruction Register’ width of 4 bits. 

• All Atmel ATFxxxx CPLD’s have an instruction width of 8 bits. 

 

3.6.5 Calculating the ‘Bits Before’ value 

To calculate the ‘Bits Before’ value: 

• Find out the ‘JTAG Instruction Register’ width (number of bits) in the manufacturers 

datasheet for each JTAG device you are looking to program in the chain. 

• Add together all the ‘JTAG Instruction Register’ widths for JTAG devices BEFORE the 

Target Device 

• Enter this value in the ‘Bits BEFORE’ field 

 

Example: 

• In our example JTAG Chain with 3 AVR devices, each AVR device will have a ‘JTAG 

Instruction Register’ width of 4 bits. 

• If you are trying to program ‘JTAG Device 2’ in the JTAG Chain of 3 devices, then there is 1 

AVR device before Device 2 so the ‘Bits BEFORE’ field should be set to 4. 

 

3.6.6 Calculating the ‘Bits After’ value 

To calculate the ‘Bits After’ value: 

• Find out the ‘JTAG Instruction Register’ width (number of bits) in the manufacturers 

datasheet for each JTAG device you are looking to program in the chain. 

• Add together all the ‘JTAG Instruction Register’ widths for JTAG devices AFTER the Target 

Device 

• Enter this value in the ‘Bits AFTER’ field 

 

Example: 

• In our example JTAG Chain with 3 AVR devices, each AVR device will have a ‘JTAG 

Instruction Register’ width of 4 bits. 

• If you are trying to program ‘JTAG Device 2’ in the JTAG Chain of 3 devices, then there is 1 

AVR device after Device 2 so the ‘Bits After’ field should be set to 4. 
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3.6.7 Summary of the JTAG Chain settings 

Here are the settings to program ’Device 2’ in the 3 device JTAG chain: 

 

 
 

• There is one AVR device BEFORE ‘Device 2’ and one AFTER it. 

• Every AVR device has an ‘JTAG Instruction Register width’ of 4 bits, so there are ‘4 bits 

before’ and ‘4 bits after’ the target device - ‘Device 2’. 
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3.7 Testing JTAG communication with the Target Chip 

To make sure that the programmer can communicate to the Target JTAG device, try reading back the 

Device Signature as follows: 

• Select the <FLASH> tab 

• Locate the <Check Sig> button on the right-hand side of the screen and click it. 

� The programmer will now try to communicate with the Target Chip via the JTAG Interface 

� If the Target Chip responds correctly, then EDS will report ‘Signature Read: Pass’. 

 

 
 

� If the Target Chip does not respond, then EDS will report either: 

 

i. Cannot enter programming mode 

If you receive this error, please check the following: 

• The JTAG connections between the programmer and the Target System are correct.  

• There is definitely power applied to the Target System and to all the JTAG devices if the 

Target Device is part of a JTAG chain. 

• The ‘JTAG Chain’ settings are correct for the Target Device being programmed. 

• Try slowing down the ‘JTAG Frequency’ and then try to check the Device Signature again. 

 

ii. ‘Signature Read: Fail’. 

 

 
 

If you receive this error, please check the following: 

• Make sure there are no series resistors in-line with any of the JTAG signal lines 

• Make sure there are no capacitors on any of the JTAG signal lines 

• Make sure the total length of the JTAG ISP cabling is no more than 200 cm 

• The ‘JTAG Chain’ settings are correct for the Target Device being programmed. 

• Try slowing down the ‘JTAG Frequency’ and then try to check the Device Signature again. 

• If the Signature looks like a valid signature, make sure that you have selected the correct 

JTAG Device in the chain. It is possible that the programmer is actually communicating with a 

different device by mistake and hence reading the wrong signature. 
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3.8 Programming the FLASH Area 

These instructions describe how to program the contents of a file into the FLASH area of the Target 
Device: 

• Select the <FLASH> tab 

• If you have not already selected a data file to program, click the ‘Edit buffer’ check box and 

then click the <Load> button to select a suitable Binary of Intel Hex file. 

• The contents of the specified file should now be displayed in the Buffer Window. 

• Click the <Write> button 

 

 
 

• EDS will automatically perform a Chip Erase by default which will erase the entire FLASH 

before programming any data into it. 

• Select the address range you wish to program. 

• EDS will automatically use the ‘Start’ and ‘End’ address of the FLASH input file unless 

otherwise specified. This reduces the total data actually programmed to the number of bytes in 

the input file rounded to the end of the nearest FLASH Page. 

• If you want to program the entire FLASH range, click the <Entire Device> button. 

• Click <OK> to program the FLASH of the Target Chip. 

• The programmer should now start to program the chip. 

• The BUSY LED will illuminate on the programmer. 

• The programmer will program the contents of the Buffer Window into the FLASH area of the 

Target Device.  

• Each block of data is programmed and then verified so if a failure occurs it will be notified 

immediately.  

• To verify that the data has been programmed correctly, click the <Verify> button. 
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3.9 Programming the EEPROM Area 

These instructions describe how to program the contents of a file into the EEPROM area of the Target 
Device. 
 

Important note: 

In JTAG ISP mode, an EEPROM location must contain 0xFF before it can be programmed to any 

other value. This requires a ‘Chip Erase’ operation to clear all locations to the value 0xFF.  

 
To program the EEPROM area: 

• Select the <EEPROM> tab 

• If you have not already selected a data file to program, click the ‘Edit buffer’ check box and 

then click the <Load> button to select a suitable Binary of Intel Hex file. 

• The contents of the specified file should now be displayed in the Buffer Window. 

• Click the <Write> button 

 
 

• Select the address range you wish to program 

• EDS will automatically use the ‘Start’ and ‘End’ address of the EEPROM input file unless 

otherwise specified. This reduces the total data actually programmed to the number of bytes in 

the input file rounded to the end of the nearest EEPROM Page. 

• If you want to program the entire EEPROM range, click the <Entire Device> button. 

• The EEPROM address range which you are trying to program must contain 0xFF otherwise 

the programmer will be unable to program the bytes. 

• Click <OK> to program the EEPROM of the Target Chip. 

• The programmer should now start to program the chip. 

• The BUSY LED will illuminate on the programmer. 

• The programmer will program the contents of the Buffer Window into the EEPROM area of the 

Target Device.  

• The EEPROM data is programmed in pages of either 4 or 8 bytes and then verified so if a 

failure occurs it will be notified immediately.  

 

If EDS reports an ‘EEPROM programming error’, please check the following: 

• Make sure that address range in the EEPROM which is being programmed contains the value 

0xFF before the programming operation is started.  
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• This may require a Chip Erase operation to be performed because in JTAG Mode an 

EEPROM Page does NOT get automatically erased during a program operation. 

• To Erase the EEPROM area to value 0xFF, you may need to set the ‘EESAVE’ fuse to a ‘1’ 

and then perform a Chip Erase operation. 

 

3.10 Erasing the FLASH / EEPROM area 

It is possible to erase the FLASH and / or EEPROM area of a Target Device by clicking the <Erase> 

button. This will also erase the Security Lock Bits changing all the Lock Bit values from ‘0’ to ‘1’. The 

Configuration Fuses are not affected by a Chip Erase operation. 

 

3.10.1 Erasing the FLASH area 

The only way to erase the FLASH area of the Target Device is to use the ‘Chip Erase’ command: 

• Select the <FLASH> tab 

• Click the <Erase> button 

• This will send the ‘Chip Erase’ command to the Target Device. 

• The Target Device will then erase the FLASH (and EEPROM as long as the EESAVE flag is 

not set to 0) 

• To confirm that the FLASH / EEPROM is definitely blank, you can choose to perform a Blank 

Check operation. 

 

3.10.2 Erasing the EEPROM area – special considerations 

The only way to erase the EEPROM area of the Target Device in JTAG mode is to use the ‘Chip 

Erase’ command: 

• Select the <EEPROM> tab 

• Click the <Erase> button 

• This will send the ‘Chip Erase’ command to the Target Device. 

• The Target Device will then automatically erase the FLASH followed by the EEPROM areas. 

• The EEPROM area will only be erased if the EESAVE flag is set to ‘1’. 

• To confirm that the FLASH / EEPROM is definitely blank, you can choose to perform a Blank 

Check operation. 

• If the EEPROM is still not blank after the Erase Operation, check that the EESAVE fuse is 

definitely set to ‘1’. 

 

Important note: 

In JTAG ISP mode only, it is not possible for the programmer to write any bit of EEPROM from a ‘1’ 

to a ‘0’. This means that each EEPROM location must contain 0xFF before it can be programmed to 

any other value. This requires a Chip Erase operation to clear all locations to the value 0xFF.  
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3.11 Programming the Configuration Fuses 

3.11.1 Overview 

The Configuration Fuses of an Atmel AVR device can be programmed / read using the <Fuses> tab. 

 

Instructions: 

• Select the <Fuses> tab 

• If this is a new EDS project, then the Fuses will be disabled. 

• Check the ‘Program Post-Erase Fuse Bits’ box � the Fuses can now be programmed 

 

 
 

• The values of the Fuses which could be programmed into the Target Chip are shown in the 

‘PC Fuse State’ column. The initial Fuse values are the default Fuse values for a virgin chip. 

• The ‘Target Fuse State’ column displays the current value of the Fuses of the actual Target 

Device. They are initially set to ‘?’ until the first read or write operation is performed.  

• The Fuse Hex values are shown for the ‘PC Fuse State’ at the bottom of the screen. 

• A red ‘x’ next to a fuse indicates a ‘Dangerous Fuse’. Programming one of these fuses 

incorrectly could result in the chip no longer responding to the programmer. 
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3.11.2 Reading the Fuses from a Target Device 

To read the Fuse Values from a Target Device: 

• Click the <Read> button 

• The Hex values of the ‘Fuse Bytes’ which are read back are displayed as follows: 

 

 
 

• The Fuse values from the Target Device are now displayed in the ‘Target Fuse State’ 

column. 

 

 
 
 

3.11.3 Verifying the Fuses of a Target Device 

To verify the Fuse Values in a Target Device with the Fuse Values in the ‘PC Fuse State’ column: 

• Click the <Verify> button 

• Any differences in the Fuse Values between the PC settings and the Target Device setting will 

now be displayed. 
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3.11.4 Writing the Fuses into a Target Device 

 

• To program the Fuses values in the ‘PC Fuse State’ column into the Target Device, click the 
<Write> button 

• If there are any ‘Dangerous Fuses’ in the list, then the following warning will be displayed: 
 

 
 

• !!! WARNING !!! If you choose to program e.g. the JTAGEN Fuse to a ‘1’ (unprogrammed), 

then the chip will no longer respond the JTAG ISP programming. 

• Click <Yes> to allow programming of the selected Fuse 

• Click <All> to skip all fuse warning messages and program all the fuses 

• The programmer will now program all the fuses at the same time and then read them back and 

verify them with the values in the ‘PC Fuse State’ column. 

• The programmer will then report a PASS or FAIL for programming the Fuses. 

 

 
 
 
 

3.11.5 Using a ‘Fuse File’ to import Fuse settings into a project 

It is possible to export the ‘Fuse Values’ for a particular device to a so-called ‘Fuse File’ so that a 

single copy of the fuses is stored in one place.  This ‘Fuse File’ can then be shared amongst many 

projects if required.  See section 4 for further details about using ‘Fuse Files’ . 
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3.12 Programming the Security Fuses 

3.12.1 Overview 

The Security Fuses of an Atmel AVR device can be programmed / read using the 

<Security Fuses> tab. 

 

Instructions: 

• Select the <Security Fuses> tab 

• If this is a new EDS project, then the Security Fuses will be disabled. 

• Check the ‘Program Device Security Fuses’ box � the Security Fuses can now be 

programmed 

 

 
 

• The values of the Security Fuse values which could be programmed into the Target Chip are 

shown in the ‘PC Fuse State’ column. The initial Fuse values are the default Fuse values for a 

virgin chip which usually represents an ‘unlocked’ chip. 

• The ‘Target Fuse State’ column displays the current value of the Fuses of the actual Target 

Device. They are initially set to ‘?’ until the first read or write operation is performed.  

• The Fuse Hex values are shown for the ‘PC Fuse State’ at the bottom of the screen. 
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3.12.2 Reading the Security Fuses from a Target Device 

To read the Security Fuse Values from a Target Device: 

• Click the <Read> button 

• The Hex values of the ‘Fuse Bytes’ which are read back are displayed as follows: 

 

 
 

• The Security Fuse values from the Target Device are now displayed in the ‘Target Fuse State’ 

column. 

 

 
 

3.12.3 Verifying the Fuses of a Target Device 

To verify the Security Fuse Values in a Target Device with the Fuse Values in the ‘PC Fuse State’ 
column: 

• Click the <Verify> button 

• Any differences in the Fuse Values between the PC settings and the Target Device setting will 

now be displayed. 
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3.12.4 Writing the Security Fuses into a Target Device 

 

• To stop anyone from reading / copying the contents of an AVR device, it is usual practice to 

‘Lock’ the device at the end of the programming sequence. 

• To lock the FLASH and EEPROM from being read back, set the ‘LB1’ and ‘LB2’ Lock Bits to 

‘0’. 

• To program the Fuses values in the ‘PC Fuse State’ column into the Target Device, click the 

<Write> button 

 

 
 

• The programmer will now program all the Security Fuses at the same time and then read them 

back and verify them with the values in the ‘PC Fuse State’ column. 

• The programmer will then report a PASS or FAIL for programming of the Security Fuses. 

• The Target Device is now locked 

 

Please note: 

• Once the Lock Bits have been programmed on an AVR Device, it is then no longer possible to 

read or re-program the FLASH or EEPROM memory areas. 

• The Configuration Fuses and Security Fuses can usually still be read from a Target Device 

even if the device is locked. 

 

3.12.5 Erasing the Security Fuses 

The only way to change a Security Fuse from a ‘0’ to a ‘1’ is to perform a ‘Chip Erase’ operation. 

This will erase the FLASH / EEPROM and then finally erase the Security Fuses and set them back to 

a value of ‘1’. 
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3.13 Internal Oscillator Calibration – Factory OSCAL Byte 

3.13.1 Overview 

Every Atmel AVR microcontroller features an ‘Internal RC Oscillator’ which provides a clock source 

for the device when no external clock is present. This oscillator has been ‘factory calibrated’ by 

Atmel and the so-called ‘OSCAL Factory Calibration Byte’ can be found in the ‘Signature Row’ of 

the AVR device. With older AVR devices, the external programmer must read this OSCAL byte from 

the ‘Signature Row’ and then write it into either the FLASH or EEPROM of the target device. It is 

then the responsibility of the customer’s firmware application to transfer the byte from FLASH / 

EEPROM into the AVR OSCAL register when the firmware runs. This forces the ‘Internal RC 

Oscillator’ to run at the factory calibrated frequency. 

 

3.13.2 Reading / writing the Oscillator Calibration Byte in EDS mode 

It is possible to read back the value of the ’OSCAL Factory Calibration Byte’ for each of the 

available internal oscillators using EDS – Development Mode. 

 

Instructions: 

• Launch your project in EDS 

• Select the <Target Oscillator> tab 

• Click the ‘Internal RC Oscillator’ radio button – see screenshot below 

 

 
 

• To read the ’OSCAL Factory Calibration Byte’ for the selected ‘Internal Oscillator’, click 

the <Read Calibration Byte> button. 

� The ’OSCAL Factory Calibration Byte’ is displayed. 
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• To set the project up to program the ’OSCAL Factory Calibration Byte’ into the FLASH or 

EEPROM 

• Tick the ‘Write Calibration Byte to:’ 
 

 
 

• Select the FLASH or EEPROM area as required 

• Enter the address to program the byte into 

• When programming the byte into FLASH, the programmer will actually program the byte twice 

into a WORD.  

• Click the <Read Calibration Byte> button. 

� The read ’OSCAL Factory Calibration Byte’ is displayed. 

 

 
 

• You can now choose <Yes> to program the ’OSCAL Factory Calibration Byte’ back into the 
specified address in FLASH or EEPROM. 

 

 
 

• Click <OK> 

• The ’OSCAL Factory Calibration Byte’ is now programmed into addresses 0x1FFFE and 

0x1FFFF of the FLASH area. 

• This can be confirmed by reading back the FLASH area and it shows the two copies of the 

byte in the top two bytes. 
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3.13.3 Writing the Oscillator Calibration Byte in STANDALONE mode 

It is possible to get the programmer to automatically read the ’OSCAL Factory Calibration Byte’ and 

program it into a specified location in FLASH or EEPROM using a Standalone Project. This is ideal for 

production environments where the programmer is used without a PC. 

 

Instructions: 

• Follow the instructions in the previous section to set up the address into which the ’OSCAL 

Factory Calibration Byte’ is to be programmed. 

• Make sure that your FLASH or EEPROM data files to not also write data to the same location 

where the ’OSCAL Factory Calibration Byte’ is to be programmed 

• Compile the project and upload it to the programmer. 

• When the project is executed, it will perform the other actions specified in the project and then 

automatically read the ’OSCAL Factory Calibration Byte’ and write it into the specified 

address in FLASH or EEPROM. 

  

 

3.14 Exporting an EDS Project to a Standalone Project 

Once you have fully tested your EDS Development Project, it is possible to add the project to a 

Project Collection and then upload it to a programmer as a so-called ‘Standalone Project’. The 

project can then be executed on a programmer without requiring any form of PC control. 

 

Please follow the instructions detailed in Section 6 to upload your EDS project to a programmer.  
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4.0 Exporting / Importing Fuse Settings to / 

from an Equinox Fuse File 

4.1 Overview  

One of the new powerful features of EQTools is the ability to export the ‘Fuse Settings’ for a 

Programming Project to a Fuse File (*.eff). This allows the settings for all the fuses to be contained in 

one Fuse File which can then be imported into any of the Fuse tabs in Project Manager or in the 

<Fuses> tab in EDS. In this way, the values of all the Fuses for a particular project can be shared 

with other projects. This helps to ensure that the correct fuse values are specified in all projects. 

 

4.2 Exporting the Fuse Settings to a Fuse File 

To export the settings of the ‘Local Fuses’ column to a fuse File: 

• Select the EDS <Fuses> Tab 

• Set up the ‘Local Fuses’ to the correct values for your Target Device. 

• Click the <Export> button � a file browser is displayed. 

• Enter a suitable name for your Fuse File eg. project_fuses.eff 

• Click <Save> � The ‘Local Fuses’ column is transferred to your specified Fuse File (*.eff). 

 

4.3 Copying the Fuses from a Target Device 

To copy the Fuses from the Target Device to a Fuse File: 

• Select the EDS <Fuses> Tab 

• Click the <Read> button 

� the Fuses are read from the Target Device and are then displayed in the ‘Target State’ 

column. 

• Click the <<Copy button 

� the Fuse settings read from the Target Device are copied into the ‘Local State’ fuse 

column. 

• Click the <Export> button � a file browser is displayed. 

• Enter a suitable name for your Fuse File eg. project_fuses.eff 

• Click <Save> � The ‘Local Fuses’ column is transferred to your specified Fuse File (*.eff). 

 

4.4 Importing the Fuse Settings from a Fuse File 

To import the settings of the ‘Local Fuses’ column from a Fuse File: 

• Select the EDS <Fuses> Tab 

• Click the <Import> button � a file browser appears 

• Browse to and select your Fuse File (*.eff) 

� The Fuse settings are then automatically copied from the Fuse File to the ‘Local Fuses’ 

column. 

• To program these settings into a Target Device, click <Write>. 
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5.0 Importing Fuse Settings in HEX format 

from AVR Studio 

5.1 Overview 

If the original firmware for your project has been developed using the Atmel ‘AVR Studio’ software, 

then it is likely that both the AVR ‘Configuration Fuse settings’ and the ‘Security Fuse Settings’ 

are defined as so-called ‘Hex Fuse Bytes’. This is the raw version of the fuses where each ‘Hex 

Fuse Byte’ can represent up to 8 individual ‘Boolean Fuses’. It is possible to import the ‘Hex Fuse 

Bytes’ from AVR Studio into an EQTools project by following the instructions in the next section. 

 

5.2 Finding the AVR Studio ‘Hex Fuse Values’ 

In the Atmel ‘AVR Studio’ software, the ‘Configuration Fuse settings’ for your project are displayed 

on the <Fuses> tab – see screenshot below. 

  

 
 

The ‘AVR Studio’ software displays a high-level overview of the fuses, grouping similar fuses 

together with more meaningful group names eg. ‘BODELEVEL’ is made up of two fuses: 

BODLEVEL0 and BODLEV1 and the fuse ‘SUT_CKSEL’ actually represents the following six 

Boolean fuses: SUT0, SUT1, CKSEL0, CKSEL1, CKSEL2, CKSEL3.  
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These Fuse values are then converted by AVR Studio into ’Hex Fuse Bytes’.  For AVR 

microcontrollers, the  ‘Hex Fuse Bytes’ are called ‘LOW’, ‘HIGH’ and ‘EXTENDED’  – see 

screenshot from AVR Studio above. 

 

In this example, the ‘Hex Fuse Bytes’ are as follows: 
EXTENDED: 0xFF 
HIGH:   0xA9 
LOW:   0x42 
 
 

5.3 Importing the AVR Studio ‘Hex Fuse Values’ into EQTools 

It is possible to import the AVR ‘Hex Fuse Bytes’ from AVR Studio into EQTools. This functionality 

requires that EQTools build 927 or above is installed.  

 
Instructions: 
 

1. Launch your project in EDS (Development Mode) 

� Launch your project in EDS (Development Mode) and then select the <Fuses> tab.  

 

 
 

• The default ‘library’ settings for the Fuses are displayed in the ‘PC Fuse State’ column. These 

fuse values represent a virgin AVR device which has never been programmed before.  

• The ‘Local Fuse Values’ in Hex format are displayed at the bottom of the window. These 

values represent the current settings of the fuses in the ‘PC Fuse State’ column. 

• The  ‘Local Fuse Values’ are displayed in the following order: LOW, HIGH, EXTENDED 
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2. Click the <Enter Hex> button 

• The ‘Enter Fuse Values’ dialog box is displayed: 

 

 
 

• The Hex values displayed as default are the values corresponding to the default Fuse Settings 

already specified in EQTools. 

• Enter the ‘Hex Fuse Bytes’ from AVR Studio in the relevant Fuse Value fields: LOW, HIGH, 

EXTENDED. These fields correspond to the same fuse field values in AVR Studio – see 

example below. 

 

From AVR Studio – Fuses tab: 

 

 
 
In this example, ‘Hex Fuse Bytes’ are as 
follows: 
EXTENDED: 0xFF 
HIGH:   0xA9 
LOW:   0x42 

Enter into EQTools – Enter Hex values….. 

 

 
 

• Click the <OK> button to accept the Fuse 
values 

• EQTools will then convert these bytes into 
the Individual Boolean Fuse values. 
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� The Hex values which you entered are now converted to the corresponding individual Boolean 
fuses for each Fuse Byte. 
 

 
 

• The ‘Local Fuse Values’ represent the ‘Hex Fuse Values’ and they should have the same 

values as the Fuse Bytes specified in the ‘AVR Studio’ project. 

 
3. Export the ‘PC State Fuses’ to a Fuse File 

It is possible to export these Fuse Settings to a ‘Fuse File’ as follows: 

• Click the <Export> button 

• Save the fuse settings with a suitable name e.g. ATmega169_JTAG_Fuses.eff 

 

4. Read the fuses from the Fuse file  

• Once you have exported the Fuse Settings to a Fuse File, you can then include these Fuse 

Settings in any project. 

• In EDS, on the <Fuses> tab, tick the ‘Read from Fuse File’ check box and then browse to 

and select your Fuse File. 

 

 
 

• The project will then automatically use the Fuse Settings in the specified Fuse File.  

• The Fuse File can also be used by any other project allowing the fuse values to be shared 

between many projects if required. 
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5.4 Importing the AVR Studio ‘Hex Security Fuse Values’ into 
EQTools 

In AVR Studio, the ‘Security Fuse settings’ for your project are displayed on the <Lock Bits> tab 

and will be defined as one or more ‘Hex Security / Lock Bytes’. This is the raw version of the fuses 

where each ‘Hex Security Fuse Byte’ can represent up to 8 individual ‘Boolean Fuses’. 

 

It is possible to import the AVR ‘Hex Security Fuse Bytes’ from AVR Studio into EQTools. This 

functionality requires that EQTools build 927 or above is installed.  

 

1. Launch your project in EDS (Development Mode) 

• Launch your project in EDS (Development Mode) and then select the <Security> tab. 

 

 
 

• The default ‘library’ settings for the Fuses are displayed in the ‘PC Fuse State’ column.  

• These fuse values represent a virgin AVR device which has never been programmed before 

which should be “unlocked” ie all Lock Bits are set to ‘1’. 
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2. Click the <Enter Hex> button 

• The ‘Enter Fuse Values’ dialog box is displayed: 

 

 
 

• The value(s) displayed as default are the values corresponding to the individual Boolean Fuse 

Settings already specified in EQTools. 

• Enter the ‘Security Hex Fuse Byte(s)’ from AVR Studio in the relevant Fuse Value field(s). 

• Click <OK> to convert the Hex value(s) to Boolean fuses. 

 

 
 

• Click <OK> � the individual Boolean  Security fuses are now displayed: 
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3. Export Security Fuses to a Fuse File 

• Click <Export> and then save the Security Fuses to a Fuse File called  

eg. ATmega169_Security.eff. 

• This file can then be automatically read back into your programming project by selecting 

‘Read from Fuse File’ and then specifying the relevant Fuse File. 

 

4. Reading the Security Fuses from a Fuse file  

• Once you have exported the Security Fuse Settings to a Fuse File, you can then include 

these Fuse Settings in any project. 

• In EDS, on the <Security> tab, tick the ‘Read from Fuse File’ check box and then browse to 

and select your Fuse File. 

 

 
 

• The project will then automatically use the Fuse Settings in the specified Fuse File.  

• The ‘Security Fuse File’ can also be used by any other project allowing the fuse values to be 

shared between many projects if required. 
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6.0 Creating a Standalone Programming 

Project 

6.1 Overview 

Once you have tested your project fully in EDS (Development Mode), it is possible to then make this 

project into a ‘Standalone Project’ which can be uploaded to a programmer. This single standalone 

project file (*.prj) will contain all the information required to program the Target Device including 

FLASH file, EEPROM file, Fuse settings, Security Settings etc. 

 

6.2 Creating a Standalone Project from EDS (Development Mode) 

In EDS (Development Mode), select the <Overview> tab 

 

 
 

• If this is the first time the EDS Project has been uploaded to a programmer, click the 

<Add Project File to a new Project Collection> button. 

• If the EDS Project has already been uploaded to a programmer before, click the 

<Update this project in an existing Project Collection> button. 

 

 

6.3 Add Project File to a new Project Collection 

When the <Add Project File to a new Project Collection> button is pressed, the EDS project will be 

automatically added to a new ‘Project Collection’.  

• The EDS Project will appear in a ‘Project Manager’ window. 

• You will then be prompted to save the ‘Project Collection’. Choose a suitable name eg. 

Test.ppc and click the <Save> button. 
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The Project Manager window is now displayed – see section 6.4. 
 
 

6.4 Uploading a Project to a programmer 

The Project Manager window displays all the projects in your Project Collection. 

 

 
 

In this example we have only one project called ‘ATMEGA2560-JTAG’.  

The ‘Unique ID’ is the ‘Project Name’ which is also the file name you saved the project with in EDS. 

 

To upload the project to the programmer: 

• Click the <Upload all projects> button 

� uploads all the projects in the collection to the programmer. 

or 

• Click once on the project you wish to upload in the Project Manager window and then click 

the <Upload selected project> button 

� uploads only the selected project in the collection to the programmer. 

Follow the on-screen Upload Wizard instructions to complete the uploading of the project(s) to the 

programmer(s). 
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6.5 Re-testing a Project in EDS (Development mode) 

If you want to re-test a Programming Project in EDS (Development Mode), the simplest method to do 

this is as follows: 

• Use Project Manager to open your Project Collection (*.ppc file) 

• Click once on the project which you wish to test in EDS mode. This will select the project. 

 

 
 

• Click the <Test in EDS> button 

� The selected project will now be opened in EDS (Development Mode). 

 

 
 

• You can now test your project in EDS (Development Mode). 


