
© 2008 Phyton, Inc. Microsystems and Development Tools

ChipProg Device Programmers

User's Guide

C h i p P r o g - 48
C h i p P r o g - 40
C h i p P r o g - G 4
C h i p P r o g - I S P

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Printed: November 2008 in (whereever you are located)

ChipProg Device Programmers

© 2008 Phyton, Inc. Microsystems and Development Tools

3Contents

3

© 2008 Phyton, Inc. Microsystems and Development Tools

Table of Contents

Foreword 0

Part I Introduction 7

... 81 Terms and Definitions

... 102 System Requirements

Part II ChipProg Family Brief Description 10

... 111 Comparisson matrix

... 122 ChipProg-48

.. 13Major features

.. 14Hardware characteristics

.. 14Software features

... 153 ChipProg-40

.. 16Major features

.. 16Hardware characteristics

.. 17Software features

... 174 ChipProg-G4

.. 18Major features

.. 18Hardware characteristics

.. 19Software features

... 205 ChipProg-ISP

.. 22Major features

.. 22Hardware characteristics

.. 22Software features

Part III Quick Start 23

... 241 Installing the ChipProgUSB Software

... 272 Installing the USB Drivers

... 293 Hardware installation

.. 30ChipProg-48

.. 31ChipProg-40

.. 31ChipProg-G4

.. 32ChipProg-ISP

... 334 Getting Assistance

.. 33On-line Help

.. 33Technical Support

.. 34Contact Information

Part IV Graphical User Interface 34

... 351 User Interface Overview

... 352 Toolbars

... 363 Menus

.. 37The File Menu

ChipProg Device Programmers4

© 2008 Phyton, Inc. Microsystems and Development Tools

... 38Configuration Files

.. 39The View Menu

.. 40The Project Menu

... 40The Project Options Dialog

... 41The Open Project Dialog

... 42Project Repository

.. 43The Configure Menu

... 43The Select Device dialog

... 44The Buffers dialog

... 44The Buffer Configuration dialog

... 44Main Buffer Layer

... 45Buffer Layers

... 45The Serialization, Checksum and Log dialog

... 45Device Serialization

... 46Checksum

... 47Signature string

... 47Log file

... 49The Preferences dialog

... 50The Environment dialog

... 51Fonts

... 52Colors

... 52Mapping Hot Keys

... 53Toolbar

... 53Messages

... 54Miscellaneous Settings

... 54Configurating Editor Dialog

... 56General Editor Settings

... 57The Editor Key Mapping

... 57The Edit Key Command Dialog

.. 58The Commands Menu

... 59Calculator

.. 60The Script Menu

.. 60The Window Menu

.. 61The Help Menu

... 614 Windows

.. 61The Program Manager Window

... 62The Program Manager tab

... 63Auto Programming

... 64The Options tab

... 65Split data

... 66The Statistics tab

.. 67The Device and Algorithm Parameters window

.. 70Buffer Dump Window

... 71The 'Configuring a Buffer' dialog

... 72The 'Buffer Setup' dialog

... 74The 'Display from address' dialog

... 74The 'Modify Data' dialog

... 75The 'Memory Blocks' dialog

... 76The 'Load File' dialog

... 76File Formats

... 77The 'Save File' dialog

.. 78The Device Information window

... 78Phyton programming adapters

... 80Adapters for in-system programming

5Contents

5

© 2008 Phyton, Inc. Microsystems and Development Tools

.. 81The Console Window

.. 81Windows for Scripts

Part V Operating with ChipProg programmers 82

... 821 Inserting devices to a programming socket

... 822 Auto-detecting the device

... 833 Basic programming functions

.. 83How to check if a device is blank

.. 83How to erase a device

.. 83How to program a device

... 84How to load a file into a buffer

... 84How to edit information before programming

... 84How to configure the chosen device

... 84How to write information into the device

.. 85How to read a device

.. 85How to verify programming

.. 85How to save data on a disc

.. 86How to duplicate a device

... 864 Multi- and Gang-programming

.. 87The Program Manager Window

... 88The Program Manager tab

... 88The Options tab

... 89The Statistics tab

... 905 In-System Programming

Part VI Script Files 92

... 931 The Script Files Dialog

... 942 How to create and edit script files

.. 95The Editor Window

.. 95Text Edit

... 96The Search for Text Dialog

... 97The Replace Text Dialog

... 98The Confirm Replace Dialog

... 99The Multi-File Search Results Dialog

... 99Search for Regular Expressions

... 100The Set/Retrieve Bookmark Dialogs

... 100Condensed Mode

... 100The Condensed Mode Setup Dialog

... 101Automatic Word Completion

... 101Syntax Highlighting

... 101The Display from Line Number Dialog

... 102The Quick Watch Function

... 103Block Operations

... 1043 How to start and debug script files

.. 105The AutoWatches Pane

.. 105The Watches Window

... 106The Display Watches Options Dialog

... 106The Add Watch Dialog

.. 107The User Window

.. 107The I/O Stream Window

ChipProg Device Programmers6

© 2008 Phyton, Inc. Microsystems and Development Tools

Part VII References 108

... 1081 Command line keys

... 1092 Errors Messages

.. 109Error Load/ Save File

.. 109Error Addresses

.. 109Error sizes

.. 110Error command-line option

.. 110Error Programming option

.. 110Error DLL

.. 110Error USB

.. 111Error programmer hardware

.. 111Error internal

.. 111Error confiquration

.. 111Error device

.. 112Error check box

.. 112Error mix

.. 112Warning

... 1123 Expressions

.. 114Operations with Expressions

.. 115Numbers

.. 115Examples of Expressions

... 1164 Script Language

.. 116Simple example

.. 117Description

.. 117Built-in Functions

.. 118Built-in Variables

.. 119Difference between the Script and the C Languages

.. 121Script Language Built-in Functions and Variables

... 1235 In-System Programming for different devices

.. 123Specific of programming PICmicro

.. 123Specific of programming AVR microcontrollers

.. 124Specific of programming Atmel 8051 microcontrollers

Index 125

Introduction 7

© 2008 Phyton, Inc. Microsystems and Development Tools

1 Introduction

ChipProg is a family of device programmers produced by Phyton, Inc. Microsystems and Development
Tools (hereafter Phyton). All modern ChipProg models are driven via a personal computer USB ports.
This line of Phyton programmers has an universal software – ChipProgUSB – that controls all the USB
hosted models available now and those are planned to be introduced soon. The ChipProg
programmers support thousands of programmable memory devices, including EPROM, EEPROM,
FLASH, NVRAM and OTP; programmable microcontrollers and logical devices: PAL, PLD and CPLD.
The family includes four models shown below: ChipProg-48 and ChipProg-40 (top row),
ChipProg-G4 and ChipProg-ISP (bottom row). New ChipProg models will be released soon.

The ChipProg-48 and ChipProg-40 programmers are intended for engineering and small volume
manufacturing. These models allow operating on the devices before they are installed in the
equipment (parallel programming) as well as on the devices already installed in the user's equipment
(the method known as In-System Programming, or ISP, that uses serial data transmission into the
programmable device). The ChipProg-ISP is a low-cost programmer for engineering, field service and
manufacturing uses. The ChipProg-G4 is a gang programmer intended for small and middle-volume
production; it has four programming sockets.

The ChipProgUSB software is intuitive and easy-to-use. See the User Interface topics. The software package
includes an embedded script language that enables the automation of many routine operations – see the
Script Files.

The ChipProgUSB software runs on the IBM PC hardware platform under the control of several
Windows™ versions (see the System requirements).

ChipProg Device Programmers8

© 2008 Phyton, Inc. Microsystems and Development Tools

1.1 Terms and Definitions

 Terms used in the document

Target device or Target The device to be programmed by a programmer either in the programmer
socket or by an additional adapter or by a cable for in-system
programming.

Start and End Addresses
(of the Target device)

A range of the device physical memory for the programming operations
(Read, Write, Verify, etc.).

Device package or
Package

Mechanical characteristics of the target device; ChipProg programmers
enable operations on the devices packed in the DIP (DIL) packages with
no additional adapters as well as on most non-DIP packed devices,
including but not limited to the devices in the PLCC, SOIC, SSOP, TSOP,
SSOP, QFP, BGA, QNF and other packages.

Programming socket or
Programming ZIF socket
or ZIF socket

A socket installed on a programmer unit or on an adapter (see below) to
accommodate the target device for programming. All ChipProg models
use ZIF (or Zero Insertion Force) programming sockets that allow for the
temporary installation of the target device in the programmer site and
easily removing it after completing the programming procedure.%CPN%>
-40, ChipProg-48 and ChipProg-G4 are equipped with 40- and 48-pin ZIF
sockets allowing operation on any DIP-packed devices with different
numbers of leads and different widths and also connecting additional
adapters for programming devices in other packages.

Adapter or Package
adapter

A small transition board with dual-in-line rows of pins pluggable into the
programmer ZIF socket on the bottom side and with a package-specific
ZIF socket (TSOP, PLCC, etc.) on the top. The adapters for in-system
programming by means of the parallel programmers are implemented as
ribbon cables that connect to the target board via a special header. The
adapter boards can carry passive components (ZIF sockets, pins and
cables) and active components (drivers, latches, transistors, etc.).
Hundreds of Phyton brand adapters as well as third party adapters are
available to support devices in most types of mechanical packages.

File In the ChipProg context the term file may represent: a) an image of
information on a PC hard drive or other media that is supposed to be
written into the target device’s physical memory or b) an image read out
from the target device and then stored on the disk or other media. Files in
a ChipProg can be loaded from and saved on a PC hard drive or CD.

Buffer or Memory buffer A memory segment, physically assigned from the computer operational
memory (RAM), for temporarily storing, editing and displaying the data to
be physically written to the target device’s memory or read out from the
device. The program allows opening an unlimited number of buffers of
any size while it is not restricted by the computer memory.

Introduction 9

© 2008 Phyton, Inc. Microsystems and Development Tools

Buffer layer or sub-layer A buffer may have a few layers (in some topics also known as sub-layers)
that are defined by a particular architecture and memory model of the
target device. For example, for some microcontrollers one buffer can
include the code and data memory layers (see more details below).

Buffer size The buffers may have different sizes from 128KB to 32GB each.

Buffer start address The address to display the buffer contents from.

Checksum An arithmetic sum of the data located within a specified part of the buffer
calculated by the programmer to control the data integrity. The program
enables different algorithms for the checksum calculation and enables
writing the checksum into a specified location of the target device.

Parallel or In-socket
programming

Operations on a device being placed into the programmer’s ZIF socket or
into a programming adapter (opposite to the in-system programming
below).

ICP or in-circuit
programming

Programming devices mounted on the boards (in the user’s equipment)
via special adapter-cable connecting the programmer to the target.

ISP or in-circuit
programming

Same as above. Programming devices mounted on the boards (in the
user’s equipment) via special adapter-cable connecting the programmer
with the target.

ISP Mode Mode of the in-system programming that is usually defined by the
programming signals voltage or the ISP interface (JTAG, UART, SPI,
etc.). Distinct ISP modes are enabled for different target devices and
more than one mode may exist for one device.

ISP JTAG Mode In-system programming via a JTAG interface.

ISP HV Mode In-system programming that requires applying a relatively high voltage to
the target device, (12V for example).

Project An integrated set of information in the ChipProgUSB that completely
describes the target device, properties of the data buffers, programming
options and settings, list of the source and destination files with all their
properties, etc.. Each project that has its own unique name can be stored
and promptly reloaded for immediate execution. Usually a user creates a
project to work with one type of device. Working with projects saves a lot
of time for the initial configuration of the programmer every time you start
working with a new device.

ChipProg Device Programmers10

© 2008 Phyton, Inc. Microsystems and Development Tools

 File - Buffer - Target structure

Buffers are intermediate layers between the data in files and the data in the target device. The
ChipProg enables no direct interaction between the files and target devices. All the file operations,
such as loading and saving files are applicable to the buffers only. All the physical manipulations
with the target device memory content pass through the buffers as well. This is a fundamental
principle of the programmer operations with data and devices

Examples of the buffer's layer structures of different devices:

1. In the Intel 87C51FA microcontroller each opened buffer includes two layers: Code and
Encryption table.

2. In the Microchip PIC16F84 microcontroller each opened buffer includes three layers: Code,
Data EEPROM and Identifier locations.

Each buffer layer can be opened for watching or editing by clicking its tab on the top of the buffer
window.

1.2 System Requirements

To run ChipProgUSB and to control a ChipProg programmer, you need an IBM PC-compatible computer with
the following components:

· Pentium-III CPU or higher
· Windows 98/2000/XP/Vista OS for the ChipProg-48, ChipProg-40 and ChipProg-ISP programmers
· Windows 2000/XP/Vista for the ChipProg-G4 programmer
· 256MB of RAM
· At least one USB port
· A hard drive with at least 200MB of free space

2 ChipProg Family Brief Description

The Phyton family of the ChipProg programmers at the moment of making this Help Manual included:

· ChipProg-48

· ChipProg-40

· ChipProg-G4

· ChipProg-ISP

New ChipProg programmer models will be added soon.

ChipProg Family Brief Description 11

© 2008 Phyton, Inc. Microsystems and Development Tools

2.1 Comparisson matrix

Programmer Model ChipProg-G4 ChipProg-48 ChipProg-40 ChipProg-ISP

Major features

Primarily intended for Production and chip
replication

Engineering and low
volume production

Engineering and low
volume production

Engineering, low
volume production
and field service

Method of writing / reading
information

Multi-site, concurrent,
parallel, in socket

Single-site, parallel,
in socket

Single-site, parallel,
in socket

Single-site, serial, in
system

Target devices FLASH, EPROM,
EEPROM, NVRAM,
MCU, PLD

FLASH, EPROM,
EEPROM, NVRAM,
MCU, PLD

FLASH, EPROM,
EEPROM, NVRAM,
MCU

FLASH, EEPROM,
MCU with ISP
capability only

Universality in terms of the
target support

Yes Yes Yes Yes

PC interface USB, 2.0 USB, 2.0 USB, 2.0 USB, 2.0

Multi-programming mode,
Number of programmers
driven from one PC

Yes,
Unlimited

Yes,
Unlimited

Yes,
Unlimited

Yes,
Unlimited

PC interface USB, 2.0 USB, 2.0 USB, 2.0 USB, 2.0

Programming socket or
cable

4 by 48 pin, DIL 48 pin, DIL 40 pin, DIL Programming cable,
14 pin max

Adapters availability Phyton brand and
third party adapters

Phyton brand and
third party adapters

Phyton brand and
third party adapters

Phyton brand cables

Software update Lifetime free of
charge

Lifetime free of
charge

Lifetime free of
charge

Lifetime free of
charge

Technical characteristics

Built-in microcontroller, Fclk Yes, 32-bit, 60 MHz Yes, 32-bit, 60 MHz Yes, 32-bit, 60 MHz Yes, 8-bit, 10 MHz

Built-in FPGA, Fclk Yes, up to 100 MHz Yes, up to 100 MHz Yes, up to 100 MHz Yes, up to 10 MHz

Logical pin drivers Universal,
1.8V to 5.5V

Universal,
1.8V to 5.5V

Universal,
1.8V to 5.5V

Universal,
1.8V to 5.5V

Analog drivers Universal, 10-bit DAC Universal, 10-bit
DAC

Not universal Not universal

Adjustability of the write
impulses edges’ slopes

Yes Yes Yes Yes

Capability to support new
target devices

Unlimited Unlimited Limited by
implementation of
the analog drivers

Limited by
implementation of
the analog drivers

In-system programming
capability

Yes, with additional
cables

Yes, with additional
cables

Yes, with additional
cables

Yes

Chip insertion auto detect
capability

Yes Yes Yes No

Correct chip insertion
testing

Yes Yes Yes Yes

Checking bad contact in the
programming socket

Yes Yes Yes No

Project management by the
software shell

Yes Yes Yes No

Serialization of the
programmed devices

Yes Yes Yes No

ChipProg Device Programmers12

© 2008 Phyton, Inc. Microsystems and Development Tools

Writing signatures into the
programmed devices

Yes Yes Yes No

Logging programming
sessions to files

Yes Yes Yes No

Host computer and
operation system

IBM PC, Windows
2000/XP/Vista

IBM PC, Windows
98/ME/
2000/XP/Vista

IBM PC, Windows
98/ME/
2000/XP/Vista

IBM PC, Windows
98/ME/
2000/XP/Vista

Compare the programming + verification time for the selected devices
(min:sec)

M25P20 00:07

SST39VF016Q 00:45 00:45 00:45 02:50

MX28F640C3BB 00:56 00:56 00:56 02:27

MX29LV017A 00:23 00:23 00:23 02:56

MX29LV160CT 00:16 00:16 00:16 01:17

SST49LF008A 00:19 00:19 00:19 01:43

PIC18LF8722 00:11 00:11 00:11 00:19

AT89S51 00:01 00:01 00:01 00:01

2.2 ChipProg-48

The ChipProg-48 universal programmer can be effectively used for both engineering and low-volume
manufacturing. It supports in-socket and in-system programming of thousand of devices and has no
valuable limitations in supporting future devices. The unlimited future device support differs ChipProg
-48 from the simplified and less expensive ChipProg-40 model.

ChipProg Family Brief Description 13

© 2008 Phyton, Inc. Microsystems and Development Tools

The programmer has a 48-pin DIP ZIF socket that enables inserting any wide or narrow DIP-packed
devices with up to 48 leads without the necessity to use any additional adapters. Programming of other
devices requires the use of additional adapters available from Phyton and a few selected vendors. The
programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The palm-size programmer has
a wall-plugged power adapter that is not shown on the picture above.

Standard package contents:

· One programmer unit
· One power adapter 12V/1A+
· One USB link cable
· One CD with the ChipProgUSB software

Optionally the package may include one or more programming adapters (if ordered with the
programmer) and a “QuickStart” printed manual. See also for more details:

Major features
Hardware characteristics
Software features

2.2.1 Major features

1. Equipped with a 48 pin ZIF socket that allows insertion of the DIP-packed devices with the package
width from 300 to 600 mil (7.62 to 15.24 mm) and the number of leads up to 48 without additional
adapters.

2. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.
3. Provides fast programming; for example, completely writes a 64M bit NOR FLASH in less than 50

sec.
4. Can program target devices in the programmer ZIF socket as well as the devices installed in the

ChipProg Device Programmers14

© 2008 Phyton, Inc. Microsystems and Development Tools

equipment (ISP mode).
5. An unlimited number of ChipProg-48 tools can be driven from multiple USB ports of one computer

(or via a USB hub) to provide concurrent programming of multiple devices of the same type.
6. Has a button for fast manual launch of any single operation or a bunch of operations.
7. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

2.2.2 Hardware characteristics

1. The programmer has a 48-pin ZIF socket with a lever that enables the insertion and clamping of any
DIP-packed devices with the package width from 300 to 600 mil (7.62 to 15.24 mm) and with the
number of leads up to 48.

2. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,
QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and
many third parties.

3. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller
and FPGA. These resources allow adding new targets to the device list by a simple software
update.

4. Most timing-critical parts of the programming algorithms are implemented on the FPGA devices and
do not involve any operations on the embedded microcontroller that would slow down the
programming speed.

5. Implementation in the FPGA devices logical drivers enables outputting logical signals of any level
(low, high, Pullup, Pulldown and external clock generator) to any pin of the programming ZIF socket.

6. The tool hardware features 10-bit digital-to-analog converters for accurate settings of the analog
signals.

7. The tool hardware enables accurate programming of the rising and falling edges of the generated
analog signals.

8. The tool hardware automatically adjusts the generated analog signals.
9. The generated analog signals for both the target supplying and programming can be outputted to

any pins of the device being programmed.
10.The tool hardware can connect any pin of the device being programmed to the “Ground” level.
11.The tool hardware checks if every pin of the target device is reliably fixed by a ZIF socket’s contacts

(“bad contact” checking).
12.The tool hardware protects itself and the target device against incorrect insertions and other issues

that cause a sharp increase in the currents though the target device circuits. This “over current”
protection is very fast and reliable.

13.The target device pins are protected against the electrostatic discharge.
14.The tool’s hardware has a programmable clock generator.
15.The self-testing procedure automatically executes at any time the programmer is powered on.

2.2.3 Software features

1. Works under control of Windows 95/98/ME/2000/XP/Vista.
2. Friendly, intuitive graphic user interface.
3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set

Configuration Bits, Data Memory Support, etc., executed by a single mouse click or via menu.
4. Enables programming a batch of the commands above executed one after one either by a manual

start or by a mouse click or automatically upon the device insertion into the programming socket.
5. Allows serialization of the programming devices with auto incrementing the device numbers and

storing a serialization log.
6. The program can calculate checksums of the selected data array and then write the checksum into

a specified memory location of the target device. Several methods of the checksum calculation can
be used.

7. The program allows writing a unique signature into a specified memory location of the target device
for the device identification.

8. Project support speeds up and simplifies switching between different programming tasks.

ChipProg Family Brief Description 15

© 2008 Phyton, Inc. Microsystems and Development Tools

9. The software allows pre-programming a particular operation (or a chain of operations), which is
supposed to be automatically triggered when the programmer hardware detects insertion of the
target device into the programming socket.

10. An unlimited number of memory buffers can be opened in the main ChipProgUSB window.
11. The software supports a multiple programming mode for concurrent programming of the same

type of target devices on the same type of programmers connected to one cluster. The cluster size
has no influence on the programming speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers
as well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended
Intel HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCII OCTAL,
Angstrem SAV. Special non-standard formats can be added on request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

2.3 ChipProg-40

The ChipProg-40 universal programmer can be effectively used for both engineering and low-volume
manufacturing. It supports in-socket and in-system programming of thousand of devices. The
programmer hardware has some limitations for supporting certain devices. It does not support any
PLDs. This is a difference between the cheaper ChipProg-40 and the enhanced ChipProg-48 model.

The programmer has a 40-pin DIP ZIF socket that enables inserting any wide or narrow DIP-packed
devices with up to 40 leads without the necessity to use any additional adapters. Programming of other
devices requires use of additional adapters available from Phyton and a few selected vendors. The
programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and the
“Start” button for fast launch of the pre-programmed command chains. The palm-size programmer has
a wall-plugged power adapter that is not shown on the picture above.

ChipProg Device Programmers16

© 2008 Phyton, Inc. Microsystems and Development Tools

Standard package contents:

· One programmer unit
· One power adapter 12V/1A+
· One USB link cable
· One CD with the ChipProgUSB software

Optionally the package may include one or more programming adapters (if ordered with the
programmer) and a “QuickStart” printed manual. See also for more details:

Major features
Hardware characteristics
Software features

2.3.1 Major features

1. Equipped with a 40 pin ZIF socket that allows insertion of any DIP-packed devices with the package
width from 300 to 600 mil (7.62 to 15.24 mm) and the number of leads up to 40 without additional
adapters.

2. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.
3. Provides fast programming; for example, completely writes a 64M bit NOR FLASH in less than 50

sec.
4. Can program target devices in the programmer ZIF socket as well as the devices installed in the

equipment (ISP mode).
5. An unlimited number of ChipProg-40 tools can be driven from multiple USB ports of one computer

(or via a USB hub) to provide concurrent programming of multiple devices of the same type.
6. Has a button for fast manual launch of any single operation or a batch of operations.
7. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

2.3.2 Hardware characteristics

1. The programmer has a 40-pin ZIF socket with a lever that enables the insertion and clamping of any
DIP-packed devices with the package width from 300 to 600 mil (7.62 to 15.24 mm) and with the
number of leads up to 40.

2. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,
QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and
many third parties.

3. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller
and FPGA. These resources allow adding new targets to the device list by a simple software
update.

4. Most timing-critical parts of the programming algorithms are implemented on the FPGA devices and
do not involve any operations on the embedded microcontroller that would slow down the
programming speed.

5. Implementation in the FPGA devices logical drivers enables outputting logical signals of any level
(low, high, Pullup, Pulldown and external clock generator) to any pin of the programming ZIF socket.

6. The tool hardware features 10-bit digital-to-analog converters for accurate settings of the analog
signals.

7. The tool hardware enables accurate programming of the rising and falling edges of the generated
analog signals.

8. The tool hardware automatically adjusts the generated analog signals.
9. The generated analog signals for both the target supplying and programming can be outputted to

any pins of the device being programmed.
10. The tool hardware can connect any pin of the device being programmed to the “Ground” level.
11. The tool hardware checks if every pin of the target device is reliably fixed by a ZIF socket’s

contacts (“bad contact” checking).
12. The tool hardware protects itself and the target device against incorrect insertions and other issues

ChipProg Family Brief Description 17

© 2008 Phyton, Inc. Microsystems and Development Tools

that cause a sharp increase in the currents through the target device circuits. This “over current”
protection is very fast and reliable.

13. The target device pins are protected against the electrostatic discharge.
14. The tool’s hardware has a programmable clock generator.
15. The self-testing procedure automatically executes at any time the programmer is powered on.

2.3.3 Software features

1. Works under control of Windows 95/98/ME/2000/XP/Vista.
2. Friendly, intuitive graphic user interface.
3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set

Configuration Bits, Data Memory Support, etc., executed by a single mouse click or via menu.
4. Enables programming a batch of the commands above executed one after one by a manual start,

by a mouse click or automatically upon the device insertion into the programming socket.
5. Allows serialization of the programming devices with auto incrementing the device numbers and

storing a serialization log.
6. The program can calculate checksums of the selected data array and then write the checksum into

a specified memory location of the target device. Several methods of the checksum calculation can
be used.

7. The program allows writing a unique signature into a specified memory location of the target device
for the device identification.

8. Project support speeds up and simplifies switching between different programming tasks.
9. The software allows pre-programming a particular operation (or a chain of operations), which is

supposed to be automatically triggered when the programmer hardware detects insertion of the
target device into the programming socket.

10. Unlimited number of memory buffers can be opened in the main ChipProgUSB window.
11. The software supports a multiple programming mode for concurrent programming of the same

type of target devices on the same type of the programmers connected to one cluster. The cluster
size has no influence on the programming speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers
as well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended
Intel HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCII OCTAL,
Angstrem SAV. Special non-standard formats can be added on request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

2.4 ChipProg-G4

The ChipProg-G4 is a 4-site gang programmer based on four ChipProg-48 tools enclosed in one
case and driven from the ChipProgUSB software. It is intended for middle- and low-volume
manufacturing. It supports in-socket and in-system programming of thousand of devices and has no
valuable limitations for supporting future devices.

ChipProg Device Programmers18

© 2008 Phyton, Inc. Microsystems and Development Tools

Standard package contents:

· One programmer unit
· One power cable
· One USB link cable
· One CD with the ChipProgUSB software

Optionally the package may include one or more programming adapters (if ordered with the
programmer) and a “QuickStart” printed manual. See also for more details:

Major features
Hardware characteristics
Software features

2.4.1 Major features

1. Based on four ChipProg-48 tools enclosed in one case and connected to a PC via an embedded
USB hub.

2. Allows independent and concurrent programming of up to four devices of the same type.
3. 48 pin ZIF sockets allow insertion of any DIP-packed devices with the package width from 300 to

600 mil (7.62 to 15.24 mm) and the number of leads up to 48 without additional adapters.
4. Links to a PC USB 2.0 compatible port via one link cable.
5. Provides fast programming; for example, completely writes a 64M bit NOR FLASH in less than 50

sec.
6. Can program target devices in its socket as well as devices installed in the equipment (ISP mode).
7. Each programming site has a 'Start' button for fast manual launch of any single operation or a batch

of operations.
8. Each programming site has three LEDs for displaying the programming status (“Good”, “Busy”,

“Error”).

2.4.2 Hardware characteristics

1. Enclosed in a durable steel case to be used in an industrial environment.
2. The tool gets power from a standard outlet 110-240V, 50-60 Hz.
3. Each programming site based on a single ChipProg-48 programmer has a 48-pin ZIF socket with a

lever that enables the insertion and clamping of any DIP-packed devices with the package width

ChipProg Family Brief Description 19

© 2008 Phyton, Inc. Microsystems and Development Tools

from 300 to 600 mil (7.62 to 15.24 mm) and with the number of leads up to 48.
4. Adapters for programming devices in the SDIP, PLCC, SOIC, SOP, PSOP, TSOP, TSOPII, TSSOP,

QFP, TQFP, VQFP, QFN, SON, BGA, CSP and other packages are available from Phyton and
many third parties.

5. Single ChipProg-48 programmers inside of the tool enclosure are connected to an embedded USB
2.0 hub

6. Each programming site is built on the base of a very fast and powerful 32-bit embedded
microcontroller and FPGA. These resources allow adding new targets to the device list by a simple
software update.

7. Most timing-critical parts of the programming algorithms are implemented on the FPGA devices and
do not involve any operations on the embedded microcontroller that would slow down the
programming speed.

8. Implementation in the FPGA devices logical drivers enable outputting logical signals of any level
(low, high, Pullup, Pulldown and external clock generator) to any pin of the programming ZIF socket.

9. The tool hardware features 10-bit digital-to-analog converters for accurate settings of the analog
signals.

10. The tool hardware enables accurate programming of the rising and falling edges of the generated
analog signals.

11. The tool hardware automatically adjusts the generated analog signals.
12. The generated analog signals for both the target supplying and programming can be outputted to

any pins of the device being programmed.
13. The tool hardware can connect any pin of the device being programmed to the “Ground” level.
14. The tool hardware checks if every pin of the target device is reliably fixed by a ZIF socket’s

contacts (“bad contact” checking).
15. The tool hardware protects itself and the target device against incorrect insertions and other issues

that cause a sharp increase in the currents though the target device circuits. This “over current”
protection is very fast and reliable.

16. The target device pins are protected against the electrostatic discharge.
17. The tool’s hardware has a programmable clock generator.
18. The self-testing procedure automatically executes at any time the programmer is powered on.

2.4.3 Software features

1. Works under control of Windows 2000/XP/Vista.
2. Friendly, intuitive graphic user interface allows monitoring the programming sites statuses and can

zoom in on operations on each of four programming sites.
3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set

Configuration Bits, Data Memory Support, etc., executed by a single mouse click or via menu.
4. Enables programming a batch of the commands above and executed one after one by a manual

start, by a mouse click or automatically upon the device insertion into the programming socket.
5. Allows serialization of the programming devices with auto incrementing the device numbers and

storing a serialization log.
6. The program can calculate checksums of the selected data array and then write the checksum into

a specified memory location of the target device. Several methods of the checksum calculation can
be used.

7. The program allows writing a unique signature into a specified memory location of the target device
for the device identification.

8. Project support speeds up and simplifies switching between different programming tasks.
9. The software allows pre-programming a particular operation (or a chain of operations), which is

supposed to be automatically triggered when the programmer hardware detects insertion of the
target device into the programming socket.

10. Unlimited number of memory buffers can be opened in the main ChipProgUSB window for each of
four programming sites.

11. The software includes a full-scale binary editor allowing manual modification of the data in buffers
as well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

12. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended

ChipProg Device Programmers20

© 2008 Phyton, Inc. Microsystems and Development Tools

Intel HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCII OCTAL,
Angstrem SAV. Special non-standard formats can be added on request.

13. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

2.5 ChipProg-ISP

The ChipProg-ISP is a low-cost universal programmer specifically created for programming devices
without removing them from the equipment where they are installed. This type of programming is
known as “in-system” or “in-circuit”. The ChipProg-ISP supports serial EPROM and EEPROM flash
memory devices and embedded microcontrollers with the code and data memory programmable via
different types of serial ports: UART, JTAG, SPI and other types, including proprietary interfaces.

The programmer has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”) and
the “Start” button for fast launch of the pre-programmed command chains. The tool shown on the
picture is very small and requires no power adapter for the operations - it gets power from the USB
computer port.
 .

Connecting ChipProg-ISP to the target

The programmer has a 14-pin output connector BH-14R. A variety of Phyton adapting cables allow
connecting to the target. A simple pin-to-pin ribbon cable is supplied with the programmer by default,
and other cables (adapters) can be ordered on demand. The BH-14R connector output information
signals for the chip programming and some service signals that enable using the programmer in the
automated programming and testing equipment. See the BH-14R pinout:

ChipProg-ISP
BH-14R connector Logical signal

1 Target specific*

2 Target specific*

3 Target specific*

4 Target specific*

ChipProg Family Brief Description 21

© 2008 Phyton, Inc. Microsystems and Development Tools

5 Target specific*

6 Target specific*

7 Target specific*

8 Target specific*

9 GND

10 Target specific*

11 /Start

12 /Error

13 /Good

14 /Busy

Signals on the pins #1 to #9 and on the pin #10 are used for transmitting and receiving information and
synchro impulses to and from the target device. These signals are target specific and depend on the
type of target device or a family in general (AVR, PIC, etc.) - see here. They also are shown in the
adapters wiring diagrams; see the file adapters.chm included in the ChipProgUSB set.

The pin #9 must be connected to the target's ground.

The signals on the output pins #12, #13 and #14 represent the programmer statuses - logical '0'
means an active status, logical '1' - passive. E.g.:

/Error – the operation has failed;
/Good – the operation completed successfully;
/Busy – the programmer is in a process of executing some operation.

An active signal on the input pin #11 (log.'0') starts the preset operation, the device programming by
default. Activation of this signal, e.g. a falling edge, is equivalent to pushing the "Start" button on the
programmer.

Read also In-System Programming for different devices.

Standard package contents:

· One programmer unit
· One universal ribbon cable wired pin-to-pin
· One USB link cable
· One CD with the ChipProgUSB software

Optionally the package may include one or more programming cable-adapters (if ordered with the
programmer) and a “QuickStart” printed manual. See also for more details:

Major features
Hardware characteristics
Software features

ChipProg Device Programmers22

© 2008 Phyton, Inc. Microsystems and Development Tools

2.5.1 Major features

1. Has a 14 pin socket for connecting to the target equipment by means of several cable-adapters.
2. Protects itself and the target equipment against incorrect wiring.
3. Links to a PC USB 2.0 compatible port, e.g. slower USB connection is also supported.
4. An unlimited number of ChipProg-ISP tools can be driven from multiple USB ports of one computer

(or via a USB hub) to provide concurrent programming of multiple devices of the same type.
5. Has a button for fast manual launch of any single operation or a batch of operations.
6. Has three LEDs for displaying the programming status (“Good”, “Busy”, “Error”).

2.5.2 Hardware characteristics

1. Has a standard 14 pin connector.
2. Adapters for programming devices with in-system programming capability.
3. The programmer is built on the base of a very fast and productive 32-bit embedded microcontroller

and FPGA devices. These resources allow adding new targets to the device list by a simple
software update.

4. Most timing-critical parts of the programming algorithms are implemented on the FPGA devices and
do not involve any operations on the embedded microcontroller that would slow down the
programming speed.

5. Implementation in the FPGA devices logical drivers enable outputting logical signals of any level
(low, high, Pullup, Pulldown and external clock generator) to any pin of the programming connector.

6. The tool hardware features 10-bit digital-to-analog converters for accurate settings of the analog
signals.

7. The tool hardware enables accurate programming of the rising and falling edges of the generated
analog signals.

8. The tool hardware automatically adjusts the generated analog signals.
9. The generated analog signals for both the target supplying and programming can be outputted to

any pins of the device being programmed.
10. The tool hardware protects itself and the target device against incorrect connection.
11. The target device pins are protected against the electrostatic discharge.
12. Can be started from the external signal.
13. Three status signals “Good”, “Busy”, “Error” are outputted to the programmer connector.
14. The self-testing procedure automatically executes at any time the programmer is powered on.

2.5.3 Software features

1. Works under control of Windows 95/98/ME/2000/XP/Vista.
2. Friendly, intuitive graphic user interface.
3. Includes a set of basic commands: Blank Check, Erase, Read, Write, Verify, Lock, Set

Configuration Bits, Data Memory Support, etc., executed by a single mouse click or via menu.
4. Enables programming a batch of the commands above executed one after one by a manual start,

by a mouse click or automatically upon the device insertion into the programming socket.
5. Allows serialization of the programming devices with auto incrementing the device numbers and

storing a serialization log.
6. The program can calculate checksums of the selected data array and then write the checksum into

a specified memory location of the target device. Several methods of the checksum calculation can
be used.

7. The program allows writing a unique signature into a specified memory location of the target device
for the device identification.

8. Project support speeds up and simplifies switching between different programming tasks.
9. The software allows pre-programming a particular operation (or a chain of operations), which is

supposed to be automatically triggered when the programmer hardware detects insertion of the
target device into the programming socket.

10. Unlimited number of memory buffers can be opened in the main ChipProgUSB window.

ChipProg Family Brief Description 23

© 2008 Phyton, Inc. Microsystems and Development Tools

11. The software supports a multiple programming mode for concurrent programming of the same
type of target devices on the same type of the programmers connected to one cluster. The cluster
size has no influence on the programming speed.

12. The software includes a full-scale binary editor allowing manual modification of the data in buffers
as well as such helpful functions as Search and Replace, Fill, Compare, Copy, Invert, Calculate
Checksum, and OR, AND, XOR logical operations on the blocks of data.

13. Loading and saving files in several standard and proprietary formats: Binary, Standard Extended
Intel HEX, Motorola S-record, POF, JEDEC, PRG, Holtek OTP, ASCII HEC, ASCII OCTAL,
Angstrem SAV. Special non-standard formats can be added on request.

14. The software is featured by a script language and a mechanism of handling the script scenarios for
automation of the routine operations and chip replications.

3 Quick Start

This chapter includes the topics that describe:

How to install the ChipProgUSB software

How to install the ChipProg USB drivers

How to install the ChipProg hardware and to start up the ChipProg programmers of different type.

It is highly recommended to read all the manual basic topics included in the chapters Graphical User
Interface and Operating with ChipProg programmers before starting to use the tool.

It is assumed that you are an experienced user of MS Windows and basic Windows operations.

ChipProg Device Programmers24

© 2008 Phyton, Inc. Microsystems and Development Tools

3.1 Installing the ChipProgUSB Software

Insert the distributive ChipProgUSB disc into a CD drive of your PC, click the install button and then follow the
series of prompts that will lead you through the installation process.

Accept the terms of license agreement

Choose the folder to install

Wait for installation...

Quick Start 25

© 2008 Phyton, Inc. Microsystems and Development Tools

Phyton ChipProgUSB folder

At the end the installer will create a folder with ChipProgUSB tools' and documents' shortcuts:

Phyton Programming Adapter List - opens the adapters.chm file that list all the Phyton
programming adapters with their short descriptions and wiring diagrams.

ChipProgUSB On-Line Help - opens the programmer on-line Help document.

Phyton ChipProgUSB - invokes the ChipProgUSB executable file and starts operations for the
ChipProg-48, ChipProg-40 and ChipProg-ISP programmers working in a single programming mode.

Phyton ChipProgUSB -- Gang Mode - invokes the ChipProgUSB executable file and starts
operations for the ChipProg -G4 gang programmer or the ChipProg-48, ChipProg-40 and ChipProg-
ISP programmers working in a multiprogramming mode.

Phyton ChipProgUSB Demo - invokes a demo version of the ChipProgUSB software that allows
evaluating the product without its hardware.

Phyton WEB site - opens an Internet browser with the www.phyton.com website.

Revision History - opens the ChipProgUSB versions history file.

ChipProg Device Programmers26

© 2008 Phyton, Inc. Microsystems and Development Tools

Uninstall Phyton ChipProgUSB Programmer - starts a process of removing the ChipProgUSB
program from your computer.

Quick Start 27

© 2008 Phyton, Inc. Microsystems and Development Tools

3.2 Installing the USB Drivers

In a process of the ChipProgUSB software installation from a distributive disc the program installs the drivers
for the USB devices used in the ChipProg-G4 hardware. For all other ChipProg tools, e.g. for the ChipProg-
48, ChipProg-40 and ChipProg-ISP programmers you must install the USB drivers after the software
installation has been completed.

To invoke the USB drivers installation procedure connect a ChipProgUSB to the USB port of your computer via
the included USB cable. You should see the Found New Hardware Wizard dialog:

Select the 'No, not this time' option and click the Next button. The wizard below will appear:

ChipProg Device Programmers28

© 2008 Phyton, Inc. Microsystems and Development Tools

 Select the 'Install from a list or specific location' option and click the Next button. The screen below will
appear:

Browse to the DRIVERS.USB folder on the Phyton CD and click the Next button (certainly the drive letter can
be other than D:). This will start the drivers installation.

Quick Start 29

© 2008 Phyton, Inc. Microsystems and Development Tools

Click the Continue Anyway button to complete the installation; you will soon get the last prompt:

 Click the Finish button. Now you can use the ChipProg connected to your computer.

3.3 Hardware installation

It is a mandatory for you to use the original power adapter 12V/1A received with the ChipProg-40 or
ChipProg -48 programmer and an original power cord for the ChipProg-G4 gang programmer. Any

ChipProg Device Programmers30

© 2008 Phyton, Inc. Microsystems and Development Tools

substitutions should be agreed to with Phyton. It is also highly recommended to use the USB link
cables received with the programmers.

The hardware installations for different programmer models vary. Select the topic to see:

· The ChipProg-48 hardware installation
· The ChipProg-40 hardware installation
· The ChipProg-G4 hardware installation
· The ChipProg-ISP hardware installation

3.3.1 ChipProg-48

For the programmer to be used in a single-programming mode:

Powering the
programmer

Plug the power adapter to the ~110/240V outlet. Connect a plug of the
power adapters to the coaxial connector on the rear panel of the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connecting to a PC Connect the USB port of your PC to the USB connector on the rear
panel of the programmer by means of the USB cable. It is highly
recommended to connect the programmer to a USB slot on the
computer main unit and do not connect it through a USB hub, especially
through a passive hub.

Starting up Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of
the programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-
ISP. Select the ChipProg-48 and continue. The ChipProgUSB main
window will open and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one
computer:

Powering the
programmers

Plug the power adapters of each programmer to be connected in one
programming cluster to the 110/240V outlets. Connect plugs of the
power adapters to the coaxial connectors on the rear panels of all the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connecting the
programmers to a
cluster

Connect the USB ports of your PCs to the USB connectors on the rear
panels of the programmers by means of the USB cables. It's highly
recommended to connect the programmers to USB slots on the
computer main unit and do not connect them through a USB hub,
especially through a passive hub.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

Read about the Multi-Programming mode.

Quick Start 31

© 2008 Phyton, Inc. Microsystems and Development Tools

3.3.2 ChipProg-40

For the programmer to be used in a single programming mode, e.g. alone:

Powering the
programmer

Plug the power adapter to the ~110/240V outlet. Connect a plug of the
power adapter to the coaxial connector on the rear panel of the
programmer and make sure that the "Good" green LED on the
programmer is on.

Connecting to a PC Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. It's highly recommended to
connect the programmer to a USB slot on the computer main unit and
not connect it through a USB hub, especially through a passive hub.

Starting up Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of
the programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-
ISP. Select the ChipProg-40 and continue. The ChipProgUSB main
window will open and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one
computer:

Powering the
programmers

Plug the power adapters of each programmer to be connected in one
programming cluster to the 110/240V outlets. Connect plugs of the
power adapter to the coaxial connectors on the rear panels of all the
programmers and make sure that the "Good" green LEDs on each of
them are on.

Connecting the
programmers to a
cluster

Connect USB ports of your PCs to USB connectors on the rear panels
of the programmers by means of the USB cables. It's highly
recommended to connect the programmers to USB slots on the
computer main unit and not connect them through a USB hub,
especially through a passive hub.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

Read about the Multi-Programming mode.

3.3.3 ChipProg-G4

Powering the
programmer

Plug the power cord to a power connector on the rear panel of the
programmer, then plug an opposite site to the ~110/240V outlet. Make
sure that all four "Good" green LEDs on the programmer are on.

ChipProg Device Programmers32

© 2008 Phyton, Inc. Microsystems and Development Tools

Connecting to a PC Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. It's highly recommended to
connect the programmer to a USB slot on the computer main unit and
not connect it through a USB hub, especially through a passive hub.
Use of the passive USB hubs for connecting the ChipProg-G4
programmer is not allowed.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programming site. To
assign the number push an appropriate Start button on a top panel of
the programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

3.3.4 ChipProg-ISP

For the programmer to be used in a single programming mode, e.g. alone:

Connecting to a PC Connect a USB port of your PC to a USB connector on the rear panel of
the programmer by means of the USB cable. Make sure that the "Good"
green LED on the programmer is on. It's highly recommended to
connect the programmer to a USB slot on the computer main unit and
not connect it through a USB hub. Use of the passive USB hubs for
connecting the ISP programmers is not allowed.

Starting up Start the Phyton ChipProgUSB program; if the programmer passes the
startup test successfully the first dialog prompts you to choose one of
the programmers to work with: ChipProg-48, ChipProg-40 or ChipProg-
ISP. Select the ChipProg-ISP and continue. The ChipProgUSB main
window will open and you will be able to work with the tool.

For the programmers to be used in a multi-programming mode, e.g. connected to one
computer:

Connecting the
programmers to a
cluster

Connect USB ports of your PCs to USB connectors on the rear panels
of the programmers by means of the USB cables. Make sure that the
"Good" green LEDs on all the programmers are on. It's highly
recommended to connect the programmers to USB slots on the
computer main unit and not connect them through a USB hub. The
ChipProg programmers get power from the computer's USB port; that is
why it's important not to overload the ports. Use of the passive USB
hubs for clustering the ISP programmers is not allowed.

Starting up Start the Phyton ChipProgUSB - Gang Mode program; if all the
programmers pass the startup test successfully the first dialog prompts
you to assign the number from one to N to each programmer included in
the cluster. To assign the number push a Start button on a top panel of
each programmer one by one. Then the ChipProgUSB main window will
open and you will be able to work with the tool.

Read about the Multi-Programming mode.

Quick Start 33

© 2008 Phyton, Inc. Microsystems and Development Tools

3.4 Getting Assistance

3.4.1 On-line Help

The ChipProgUSB software has a pretty comprehensive context-sensitive on-line Help. To access it press
the F1 key or use the Help menu. Almost every ChipProgUSB dialog, message box and menu has its own
context-sensitive help, which can be invoked for the active dialog or menu by pressing F1.

In most cases you can find the necessary topic by searching for a keyword. For example, if you type "Verify"
in the first box of the Find tab, the third box will list the topics related to the programming verification. Choose
an appropriate topic from this list and press Display.

3.4.2 Technical Support

During a product’s warranty period Phyton provides technical support free of charge. Though we have been
selling the ChipProg programmers for many years the product software may contain minor bugs and some
programming algorithms may not be stable on some of the supported devices. We kindly ask you to report
bugs when you get an error message or have a problem with programming a particular device or devices.
We commit to prompt checking of your information and fixing the detected bugs.

To minimize difficulties operating with ChipProgUSB it is highly recommended to get familiar with the manual
before using the programmer. The ChipProgUSB - user interface is quite standard and intuitive, however it
includes some specific functions and controls that the user should learn about.

Before contacting Phyton

· Make sure that you use the latest ChipProgUSB version that is always available for free download from
the http://www.phyton.com.

· Make sure the detected error can be reproduced in the same working environment and is not a casual
glitch.

When contacting us

Please, provide our technical support specialists with the following information:

· Your name, the name of your company, your contact telephone number and your e-mail address.
· Name of the ChipProg model and its serial number, if one exists.
· Date of purchase, the Phyton invoice number, if available.
· Software version number taken from the About information box.
· Basic parameters of your computer and operating system.
· The device type, mechanical package and the type of the adapter if one is used.
· Descriptions of detected errors, relevant bug reports and error screen shots.

Please send your requests or questions to support@phyton.com. This is the easiest way to get
professional and prompt help. Also, see Contact Information.

ChipProg Device Programmers34

© 2008 Phyton, Inc. Microsystems and Development Tools

3.4.3 Contact Information

Phyton Inc., Microsystems and Development Tools

7206 Bay Parkway, 2nd floor
Brooklyn, New York 11204
USA

Web address: www.phyton.com

E-mail contacts:

General inquiry: info@phyton.com

Sales: sales@phyton.com

Technical Support: support@phyton.com

Tel: 1-718-259-3191

Fax: 1-718-259-1539

4 Graphical User Interface

The ChipProgUSB graphical user interface (GUI) elements include:

· Menus - global and local
· Windows
· Toolbars - global and local
· Setting Dialogs
· Hot Keys
· Context-sensitive help prompts

GUI featured with several useful additions specifically created for the ChipProg operations.

To make your operations with the ChipProgUSB program easier we highly recommend to learn the
chapters Menus and Windows in full. You will be able to use the ChipProg tools much more effectively.

Graphical User Interface 35

© 2008 Phyton, Inc. Microsystems and Development Tools

4.1 User Interface Overview

 ChipProgUSB features the standard Windows interface with several useful additions:

1. Each window has its own local menu (the shortcut menu). To open this menu, click the right mouse
button within the window area or press Ctrl+Enter or Ctrl+F10. Each command in the menu has a hot key
shortcut assigned to the Ctrl+<letter> keys. Pressing the hot key combination in the active window
executes the corresponding command.

2. Each window has its own local toolbar. The window’s toolbar buttons give access to most of the window’s
local menu commands. The specialized window toolbar buttons operate only within the specialized
window. The main ChipProgUSB window has several toolbars that can be turned on or off (in the
Environment dialog, the Toolbar tab).

3. Each toolbar button has a short prompt: when you place the cursor over a toolbar button for two seconds,
a small yellow box appears nearby with a short description of the button’s function.

4. To save screen space, you can hide any window’s title bar. To do this, use the Properties command of
the local menu. You can identify the ChipProgUSB windows by their contents and position on the screen
(and, if you wish, by color and font). When the title bar is hidden, you can move the window as if the
toolbar were the title bar: place the cursor on the free space of the toolbar, press the left mouse button
and drag the window to a new position.

5. You can open any number of windows of the same type. For example, you can open several Buffer
windows.

6. Every input text field of any dialog box has a history list. ChipProgUSB saves them when you close a
development session. Then a previously entered string can be picked from the history list.

7. All input text boxes in the dialogs feature automatic name completion.

8. All check boxes and radio buttons in the dialogs work in the following way: a double-click on the check box
or radio button is equivalent to a single click on the box or button, followed by a click on the OK button.
This is convenient when you need to change only one option in the dialog and then close it.

4.2 Toolbars

The ChipProgUSB program opens a few toolbars on top of the main window (see below).

The top line, shown right under the ChipProg main window title, includes the Main menu submenus. A
second line under the Main menu line displays icons and buttons of most frequently used commands
on files and target devices (Open project, Load file, Save file... Check, Program, Verify, etc.). There is
an indicator of the ChipProgUSB status (Ready, Wait, etc.). The third line displays a target device
selector. The fourth line, which is not displayed by default, includes an embedded editor options and
commands for scripts. The default toolbars can be customized. Read also the topics: The Configure
Menu, The Environment dialog, Toolbar.

Besides the toolbars positioned on a top of the main window, each particular window has its own local
toolbar with the buttons presenting the most popular commands associated with the window. See for
example the Buffer window's toolbar below.

ChipProg Device Programmers36

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3 Menus

The ChipProgUSB Main menu bar includes the following pull-down sub-menus:

· File menu

· View menu

· Project menu

· Configure menu

· Commands menu

· Scripts menu

· Window menu

· Help menu

To access these menus, use the mouse or press Alt+letter, where "letter" is the underlined character in
the name of the menu item.

Graphical User Interface 37

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.1 The File Menu

The File menu's commands control the file operations. For those commands that have a toolbar button, the
button is shown in the first column of the table below. If there is a shortcut key for a command, the shortcut
key is shown at the right of the command in the menu.

Button Command Description

Load ... Opens the Load file dialog that specifies all the parameters of the
file to be loaded and the file destination.

Reload Reloads the most recently loaded file with the most recently
specified parameters.

Save... Saves the file from the currently active window to a disk. Opens
the Save file from buffer dialog.

 Configuration
Files

Gives access to operations with configuration files.

Exit Closes ChipProgUSB. Alternatively, use the standard ways to
close a Windows application (the Alt+F4 or Alt+X keys
combination).

ChipProg Device Programmers38

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.1.1 Configuration Files

On exit ChipProgUSB automatically saves its configuration data in several configuration files with the
name UPROG. On start, it restores its configuration from the last saved configuration files. In addition, you
can save and load any of these files at any time using the Configuration Files command of the File menu.
You can have several sets of configuration files for different purposes.

· The Desktop file contains data about the display options and the screen configuration, and the

positions, dimensions, colors and fonts of all the opened windows. The extension of this file is .dsk.
The default file name is UPROG.dsk.

· The Options file stores the target device type, file options, etc. The extension of this file is .opt. The
default file name is UPROG.opt.

· The Session file, which stores session data and specifies the desktop and options; it can also be saved
and loaded by means of the Save session or Load session sub command of the Configuration Files

command. The extension of this file is .ses. The default file name is UPROG.ses.

· The History file, which contains all the settings entered in the text boxes of all the ChipProgUSB
dialogs. This file is hidden from users, but the settings stored earlier are available for prompt pick up
from the History lists. The extension of this file is .hst. The default file name is UPROG.hst.

Graphical User Interface 39

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.2 The View Menu

This menu controls access to the ChipProgUSB windows:

Button Command Description

Program
Manager

 Opens the Program Manager dialog.

Device and
Algorithm
Parameters

Opens the Device and Algorithm Parameters dialog.

Buffer Dump Opens the Buffer dialog.

Device
Information

 Opens the Device Information dialog.

Console Opens the Console dialog.

Local window menus

Each window has its own local (shortcut) menu. To open a local window menu, either click the right mouse
button within the window or press Ctrl+Enter or Ctrl+F10.

Most, but not all, of the local menu commands are duplicated by local toolbar buttons that are usually
displayed at the top of every window.

ChipProg Device Programmers40

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.3 The Project Menu

This menu contains commands for working with projects.

Button Command Description

New Opens the Project Options dialog.

Open Opens the Open Project dialog for loading an existing project file.

Close Saves and closes a currently opened project

Save Saves the currently opened project. Note that when you close a
project, create a new project or just exit, the current project will be
saved automatically.

 Copy As Opens the Save project dialog. Duplicating projects is helpful for
making project clones and other purposes.

Repository Opens the Project Repository dialog.

Options Opens the Project Options dialog for reviewing or changing the
project parameters.

4.3.3.1 The Project Options Dialog

This dialog is used to define the project options.

Element of dialog Description

Project File Name Specifies the project file name. The project name does not include a
path. The extension may be omitted.

Project Description
(optional)

Here you can enter your custom comments for the project.

Desktop Two radio buttons which allow you to choose if the project has its own
desktop or if there is one desktop for all projects.

Files to Load to Buffers File or list of files to load into the buffers.

Add file Opens the Load File dialog.

Remove file
Remove the selected file from field Files to Load to Buffers.

Edit file options Opens the Load File dialog.

Script to execute before
loading files:

Here you can enter the script name to be executed before loading the
files to the project.

Script to execute after
loading files:

Here you can enter the script name to be executed after loading the
files to the project.

Graphical User Interface 41

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.3.2 The Open Project Dialog

This dialog is used to open the project which was previously created.

Element of dialog Description

Project File Name Specifies the project file name. The project name does not include a
path. The extension may be omitted.

Project Open History Lists the previously opened projects. Double-clicking a line in the list
opens a corresponding project.

Remove from list Deletes the selected project from the Project Open History list.

ChipProg Device Programmers42

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.3.3 Project Repository

The Project Repository tree is a small database that stores records with links to the project files.
You can use this database to sort and group the projects as needed for better presentation and
easier access. The ChipProgUSB program displays the repository in a tree-like form that is similar
to Windows Explorer’s. Operations with the repository do not change the project files themselves.
The repository works only with records about the projects (links to the project files). A tree branch
may show projects and other branches. Any branch may contain different projects with the same
names. Different branches may contain links to the same project.

To open the Project Repository dialog invoke the Repository command of the Project menu. Each
tree branch displays the name of a particular project file without a path and the project description
shown in square brackets. The ChipProgUSB remembers the state of the tree branches (expanded
/ collapsed) and restores it next time you open the dialog.

When you install a new version of the ChipProgUSB software and copy the working environment
from the previously installed version, the new version will inherit the existing project repository (file
repos.ini).

Element of dialog Description

Add New Branch Opens the Add New Branch dialog to specify the name of a new
branch. When OK is pressed, the new branch is attached to the
selected branch.

Add a Project to Branch Opens the Open Project dialog to select a project to be added. When
Open is pressed, the selected project is added to the selected branch.

Add Current Project to
Branch

Adds the currently opened project to the selected branch.

Remove Project/Branch Deletes the selected project or branch from the repository. When
deleting a branch, all branches that "grow" from this branch and all
projects located on it will be deleted.

When deleting a project from the repository, the ChipProgUSB deletes
only the repository record about the project, and does not delete the
project from the disc.

Edit Branch Name Opens the Edit Branch Name dialog for the selected branch.

Move Up Moves a selected project or branch up the tree within the same level of
hierarchy. The branch moves together with all branches that "grow" from
it and all its projects.

Move Down Moves the selected project or branch down the tree within the same
level of hierarchy. The branch moves together with all branches that
"grow" from it, and all their projects.

Save Repository Writes the repository to a disc file.

Browse Project Folder Opens MS Windows Explorer with the opened folder of the selected
project.

Open Project Writes the repository to the disk file and opens the selected project.

Close Closes the dialog. If the repository is changed, ChipProgUSB will ask
whether to save it.

Graphical User Interface 43

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.4 The Configure Menu

This menu gives access to all the ChipProgUSB configuration dialogs.

Button Command Description

Select device ... Opens the Select Device dialog.

Device selection
history

Lists the previously selected devices.

Buffers Opens the Buffers dialog.

Serialization,
Checksum, Log
file

Opens the Serialization, Checksum, Log File

Preferences Opens the Preferences dialog.

Environment Opens the Environment dialog with tabs: the Fonts tab, the

Colors tab, the Key Mappings tab, the Toolbar tab and the
Misc tab.

4.3.4.1 The Select Device dialog

The dialog allows specification of the device to work with; it has a few groups of settings.

Element of dialog Description

Devices to list:

In this field you can check the box or boxes to specify the target
device type. All the devices are divided in three functional groups:
a) EPROM, EEPROM, FLASH; b) PLD, PAL, EPLD; c)
Microcontrollers - check one, two or all three boxes. Two check
boxes below specify a method of programming - in the
programmer socket or in the target system - some devices can be
programmed in either way, some only in one certain way.

It is recommended to narrow down the searchable database and
speed up the search by specifying the device properties if possible.

Manufacturer The box lists the device manufacturers in alphabetic order.

Search mask: Here you can enter a mask to speed up the device search. The
character '*' masks any number of any characters in the device
part number. For example, the mask 'PIC18*64' will bring up all the
PIC18 devices ending with the '64'.

Devices The file displays all the devices for a chosen manufacturer that
match to the search criteria specified in the Devices to list, Search
mask and Packages/Adapters fields.

ChipProg Device Programmers44

© 2008 Phyton, Inc. Microsystems and Development Tools

Packages/Adapters This field lists all types of the chosen device's mechanical
packages that can are supported by the the ChipProg and
appropriate adapters.

4.3.4.2 The Buffers dialog

Element of dialog Description

Buffer list:
Displays names, sizes and sub-layers of all currently open buffers

Add... Opens the Buffer Configuration dialog to create a new buffer

Delete Deletes the buffer highlighted in the 'Buffer list' box.

Edit... Opens the Buffer Configuration dialog for editing.

View Switches control to window displaying the buffer highlighted in the
'Buffer list' box. If this window is hidden under others it will be
brought to the foreground.

Memory Allocation This drop down menu allows limiting the memory size allocated
from the computer RAM to each buffer. The free memory currently
available for the allocation is shown here in this screen area.

Swap Files If the RAM space is limited the ChipProgUSB can use some space
on the PC drives by temporary writing the buffer image to the drive.
You can select the drive or allow the program to swap the files
automatically.

Use network drives Checking this box enables you to swap files on the network drives
connected to your computer.

Amount of space to leave
free on each drive (GB):

Here you can limit the space on the drive which will be never
affected by the file swapping.

4.3.4.2.1 The Buffer Configuration dialog

The Buffer Configuration dialog allows the setup of sub-layers in the buffers and to make their
presentation easier to work with.

The dialog includes as many tabs as number of sub-layers exist for a particular device. Every buffer
has at least one main layer, so the tab 'Code' is always displayed on the dialog foreground. If a
chosen device has other address spaces ('Data', 'User', etc.) the buffer has additional sub-layers
available for setting up by clicking the appropriate tabs.

4.3.4.2.1.1 Main Buffer Layer

The tab opens the dialog for configuring the main buffer layer - the 'Code' layer.

Element of dialog Description

Graphical User Interface 45

© 2008 Phyton, Inc. Microsystems and Development Tools

Buffer Name

Here you can type in a name for the buffer or pick it from the
history list. By default the first opened buffer gets the name "Buffer
#0". Then you can open the "Buffer #1", etc. or give the buffer any
name you wish.

Size of sub-layer 'Code' Here you can assign a size of the 'Code' layer from the drop-down
menu - from 128KB to 32MB.

Fill sub-layer 'Code' with
data:

The program fills the buffer sub-layers with some default
information, usually by the 'FF's or zeros. By checking these boxes
you specify when the layer 'Code' should be filled with the default
information - before loading the file or right after the device type
has been chosen.

Data to fill sub-layer with: These two toggled radio buttons define if the sub-layer 'Code' will
be filled with some default information, specific for the selected
device, or by the custom bit pattern.

Shrink buffer size when
device is selected

The buffer size usually exceeds the target device 'Code' size. By
checking this box you downsize the buffer to match the target
device and to free some computer memory.

4.3.4.2.1.2 Buffer Layers

The tab opens the dialog for presetting the buffer sub-layers.

Element of dialog Description

Fill sub-level 'ID location'
with data:

By checking these boxes you specify when the chosen sub-layer
should be filled with the default information - before loading the file
or right after the device type has been chosen..

Data to fill sub-level with: These two toggled radio buttons define if the chosen sub-layer will
be filled with some default information, specific for the selected
device, or by the custom bit pattern..

4.3.4.3 The Serialization, Checksum and Log dialog

The dialog includes the following tabs:

Serial Number,

Checksum,

Signature String,

Log File.

4.3.4.3.1 Device Serialization

The dialog allows set up of the procedure of giving a unique number to any single device belonging
to a series of devices being programmed.

ChipProg Device Programmers46

© 2008 Phyton, Inc. Microsystems and Development Tools

Element of dialog Description

Write S/N to address in
sub-level:

This option enables writing a unique device serial number into the
sub-layer specified here and at the address in the sub-layer also
specified here.

Current serial number: Specify the current serial number in this box.

S/N size, in byte: Specify a size of the serial number in bytes, for example: 1, 2, 4,
etc.

Byte Order These two toggled radio buttons define an order of bytes that
represent the serial number (if it occupies more than one byte) -
either the least significant byte (LSB) follows the most significant
byte (MSB) or vise versa.

Display S/N as:
These radio buttons set the serial number display format - decimal or
hexadecimal.

Increment serial number
by:

By checking this radio button you set incrementing the serial
number by the fixed value specified here, for example: 1, 2, 10,
etc.

Use script to increment
serial number:

 By checking this radio button you specify the increment value as a
result of executing some script file, which can be put in the box
here.

4.3.4.3.2 Checksum

The dialog allows to automatically calculate checksums of the data in buffers. Since there are
several more or less standard algorithms for the checksum calculation the dialog enables you to set
one standard algorithm or to create some custom, complex algorithms by using a script.

Element of dialog Description

Write checksum to

address:

in sub-layer:

By checking this box you begin automatically calculating the
checksum in accordance to other settings below and to write it to a
specified location in the chosen sub-layer.

Address range to calculate
checksum for:

Start:

End:

The Start and End addresses define the range of buffer addresses
for which the program calculates the checksum.

Use algorithm to calculate
checksum:

One of two toggled radio buttons. If checked, one of the preset
algorithms of the checksum calculation can be picked from the
drop-down list.

Graphical User Interface 47

© 2008 Phyton, Inc. Microsystems and Development Tools

Use script to calculate
checksum:

This radio button sets an alternative method of the checksum
calculation by means of a custom made script.

Size of summation result These radio buttons allow the selection of the checksum size: one,
two or four bytes.

Operation on summation
result

These radio buttons allow the application of some operation to the
raw result of the data summation: Negate, Compliment or do not
apply any operation.

Size of data being summed These radio buttons allow to select the source data size: one, two
or four bytes

Byte Order These two toggled radio buttons define an order of bytes that
represent the checksum - either the least significant byte (LSB)
follows the most significant byte (MSB) or vice versa.

4.3.4.3.3 Signature string

The dialog allows set up of the procedure of giving a signature to the devices being programmed.
The signature string may include some generic data like the date when the device has been
programmed and some unique data like the device serial number.

Element of dialog Description

Write Signature String to

address:

in sub-layer:

By checking this box you automatically writing a preset string to a
specified location in the chosen buffer sub-layer.

Max. size signature string: This field reserves a maximum length of the signature string in the
number of characters.

Use Signature String
template:

One of two toggled radio buttons. If checked, the string pattern
preset in the Template String Specifiers window will be programmed
into the target device.

Use script to create
Signature String:

This radio button sets an alternative method of composing the
signature string by means of a custom made script.

Template String
Specifiers:

The list of the signature string specifiers to be placed into the Use
Signature String template field. It usually includes the date and time
of the device programming, its serial number and checksum.

4.3.4.3.4 Log file

The dialog allows set up of a log or logs of the device programming.

ChipProg Device Programmers48

© 2008 Phyton, Inc. Microsystems and Development Tools

Element of dialog Description

Enable log file Checking this box enables the device programming log.

Separate log file for each
device

These two toggled radio buttons set if the logs will be separated by
a manufacturer or by the target device type or a single log that will
be kept for all the devices being programmed.

File Name (Generated
Automatically)

Another two toggled radio buttons that set what specifier will be
included into the log file name: both the manufacturer and device
type (for example: Atmel AT89C51, Microchip PIC18F2525, etc.)
or just the device type (for example: AT89C51, PIC18F2525,
etc.).

Folder for log file: This is a field for entering a full path to the folder where the log file
will be kept. There is also a button for the path browsing.

Single log file for all device
types

By checking this radio button you select keeping one common log
for all types of the devices being programmed.

File Name This is a field for entering a full path to the folder where the
common log file will be kept. There is also a button for the path
browsing.

Log File Contents A set of the log file options.

Gang mode: Socket # If the device programming was conducted in the Gang
(multiprogramming) mode and if this box is checked the socket
number will be logged.

Date/Time By checking this box you enable logging the date and time of the
device programming.

Events (device type
change, file names, etc.)

By checking this box you enable logging of all the events
associated with the device programming, e.g. the target device
replacement, loaded file names, etc.

Device operation By checking this box you enable logging of all the events
associated with the device manipulations.

Detailed Device operation By checking this box you enable more detailed logging of all the
events associated with the device manipulations.

Operation Result By checking this box you enable logging the results of the
programming operations.

Device #/Good devices/Bad
devices

By checking this box you enable logging a full number of the
devices programmed, number of successfully programmed
devices and number of failed ones.

Serial Number By checking this box you enable logging the serial number read
from the device.

Graphical User Interface 49

© 2008 Phyton, Inc. Microsystems and Development Tools

Signature string By checking this box you enable logging the signature string read
from the device.

Checksum By checking this box you enable logging the checksum value read
from the device.

Buffer name By checking this box you enable logging the buffer name.

Programming address By checking this box you enable logging the ranges of the device
locations which have been programmed.

Programming options By checking this box you enable logging all the programming
options.

Log File Format

A pair of toggled radio buttons: one sets the plain text format of the
log file, the second sets the tabulated text to be viewed in the
Microsoft Excel format.

Log File Overwrite Mode

A pair of toggled radio buttons, checking the top one sets the mode
of appending new records to a specified log file and checking the
second overwrites the old log every time the ChipProg re-starts.

Warn if size exceeds If this box is checked then every time when the log size exceeds a
specified value the ChipProgUSB issues the warning.

Immediately write log file to
disk, no buffering

If this box is checked then the ChipProgUSB does not buffer the
log to the computer RAM but writes it straight to the drive.

4.3.4.4 The Preferences dialog

Element of dialog Description

Options

Reload last file on start-up By checking this box you enable re-loading to the open buffer(s)
the last loaded file every time when you start the ChipProg.

Execute Power-On test on
start-up

This box is checked by default. By un-checking it you disable
executing the start-up ChipProg self-testing.

Sounds All programmable sounds can be picked from the preset
ChipProgUSBsounds

Device operation error: Select the sound for error operations.

Device operation
complete:

Select the sound for successful completion of the programming
operations in a single programming mode (one ChipProg is in use).

ChipProg Device Programmers50

© 2008 Phyton, Inc. Microsystems and Development Tools

Device operation complete
(Gang Mode):

Select the sound for successful completion of the programming
operations in a gang programming mode (either a few single site
programmers are connected to one PC for multi-device
programming or when the ChipProg-G4 gang programmer is in
use).

Programming start
(AutoDetect Mode):

Select the sound for indicating the start of the device programming
when the ChipProg automatically detects the device insertion into
the programming socket.

4.3.4.5 The Environment dialog

The Environment dialog includes the following tabs:

Fonts tab,

Colors tab,

Mapping Hot Keys tab,

Toolbar tab,

Miscellaneous Settings tab.

Graphical User Interface 51

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.4.5.1 Fonts

The Fonts tab of the Environment dialog opens a sub dialog for setting fonts and some appearance
elements in the ChipProgUSB windows. Only mono-spaced (non-proportional) fonts (default is Fixedsys)
are used to display information in windows. To improve appearance of the windows, you can set up either
another font for all windows, or individual fonts for each particular window.

The Windows area lists the types of windows. Select a type to set up its options. The set options are valid
for all windows of the selected type, including the already opened windows.

Element of dialog Description

Window Title Bar Toggles the title bar for windows of the selected type. If the box is checked it
adds a toolbar at the position specified by the Windows Toolbar Location
option. To save screen space uncheck the box. Also, see notes below.

Window Toolbar
Location

Sets the toolbar location for the selected window.

Grid Turns on/off the display of the vertical and horizontal grids in some window
types, and permits adjusting the column width (when the vertical grid is
allowed).

Additional Line
Spacing

Provides additional line spacing, which will be added to the standard line
spacing. Supply a new value or choose from the list of most recently used
values.

Define Font Opens the Font dialog. The selected font is valid for all windows of the
selected type.

Use This Font for
All Windows

Applies the font of the chosen window type to all ChipProgUSB windows.

 Notes

1. To move a window without the title bar, place the cursor on its toolbar, where there are no buttons, and
then operate as if the toolbar were the window title bar. Also, you can access the window control
functions through its system menu by pressing the Alt+<grey minus> keys.

2. Each window has the Properties item in its local menu, which can be invoked by a right click. The Title
and Toolbar items of the Properties sub-menu toggle the title bar and toolbar on/off for the individual
active window.

ChipProg Device Programmers52

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.4.5.2 Colors

The Colors tab of the Environment dialog opens a sub dialog for setting colors of such window elements
as window background, font, etc.. By default, most colors are inherited from MS Windows; however you
can set other colors if you prefer them.

Element of dialog Description

Color Scheme Specifies the color scheme name. Your can type in a name or choose a
recently used one from the list.

The Save button saves the current scheme to the disc; later you can restore
color settings by just a mouse click. The Remove button removes the current
scheme.

Colors Lists the names of color groups. Each group consists of several elements.

Inherit Windows
Color

When this box is checked, the selected color is taken from MS Windows. If
later you change the MS Windows colors through the Windows Control Panel,
this color will change accordingly. This option is available only for the
background and text colors.

Use Inverted Text/
Background Color

When this box is checked, the program inverts the selected window colors (for
text and background). For example, if the Watches window background color
is white and the text color is black, then the line with the selected variable will
be highlighted with black background and white text.

Edit Opens the Color dialog if the Inherit Windows Color and Use Inverted Text/
Background Color boxes are unchecked for this type of window.

The Color dialog also opens if you double-click a color in the Colors list.

Spread Sets the selected color for all windows. This option is useful for text and
background colors. For example, if you choose blue background and yellow
text for the Source window and then click the Spread button, these colors will
be set as the text and background colors for all windows.

Font For syntax highlighting in the Source window, you can specify additional font
attributes - Bold and Italic.

In some cases when synthesizing bold fonts, MS Windows increases the size
of characters and the font becomes unusable, because the bold and regular
characters should be of the same size. In these cases, the Bold attribute is
ignored.

Sometimes this effect occurs with the Fixedsys font. If you need to use Bold
fonts, choose the Courier New font.

4.3.4.5.3 Mapping Hot Keys

The Key Mapping tab of the Environment dialog opens a sub dialog for assigning hot keys for all
commands in the ChipProgUSB. The Menu Commands Tree column displays a tree-like expandable
diagram of all commands. The Key 1 (Key 2) columns contain the corresponding hot–key combinations for
the commands. The actions apply to the currently selected command.

Graphical User Interface 53

© 2008 Phyton, Inc. Microsystems and Development Tools

Element of dialog Description

Define Key 1
Define Key 2

Opens the Define Key dialog. In the dialog, press the key combination you
want to assign to the selected command, or press Cancel.
Alternatively, double-click the "cell" in the row of this command and the Key 1 (
Key 2) column.

Erase Key 1
Erase Key 2

Deletes the assigned key combination from the selected command.
Alternatively, right click the "cell" in the row of this command and the Key 1 (
Key 2) column.

4.3.4.5.4 Toolbar

The Toolbar tab of the Environment dialog controls the presence and contents of toolbars of the
windows.

Element of dialog Description

Toolbar Bands Lists the ChipProgUSB toolbars. To enable/disable a toolbar check its box.

Buttons/Commands Lists the buttons for the toolbar selected in the Toolbar Bands list. To enable/
disable a button on the toolbar check its box.

"Flat" Local Window
Toolbars

Toggles between the "flat" and quasi-3D appearance of the local toolbar
buttons for the specialized windows.

Toolbar Settings are
the Same for Each
Project/Desktop File

Employs the current settings from this dialog for other projects or files opened
later.

4.3.4.5.5 Messages

Check messages that program should display, uncheck messages that you do not want to be
displayed.

ChipProg Device Programmers54

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.4.5.6 Miscellaneous Settings

The Miscellaneous tab of the Environment dialog allows the setting of miscellaneous parameters of the
ChipProgUSB windows and messages.

Element of dialog Description

Main Window Status
Line

Controls presence and location of the <%CM%> window status line.

Quick Watch
Enabled

Turns the Quick Watch function on or off.

Highlight Active
Tabs

Turns highlighting on/off for the currently active tab (the MS Windows-style) in
windows that have tabs.

Double Click on
Check Box or Radio
Button in Dialogs

Sets the mouse’s double click function equal to a single click, plus pressing
the OK button in that dialog.

Show Hotkeys in
Pop-up Descriptions

Turns the Hotkeys display on/off in the short prompts for toolbar buttons.

Do not Display Box
if Console Window
Opened

If the Console window is open, messages will be displayed there. Otherwise,
the message box will display messages.

Always Display
Message Box

All issued messages will be displayed in the message box.
The Console window also displays these messages.

Automatically Place
Cursor at OK Button

The cursor will always be on the OK button when the message box opens and
this box is checked.

If you prefer you may press the Enter key instead of using the mouse to click
OK.

Audible Notification
for Error Messages

If you select this option, there will be a beep along with the error message.
Information (as opposed to error) messages are always displayed without the
beep.

Log Messages to
File

Specifies the log file name. All messages will be written to this file. The method
of writing is controlled by the radio button with two options:

Overwrite Log File
After Each Start

Specifies erasing the previous log file, if it exists, and creates it afresh for
every session.

Append Messages
to Log File

Specifies appending messages to the end of an existing log file. In this case,
the log file size will grow endlessly.

4.3.4.6 Configurating Editor Dialog

The ChipProgUSB software includes a built-in editor that is used for editing one type of the objects of the

ChipProgUSB - Scripts Files. The Editor Options dialog includes the following tabs:

 General Editor Settings tab,

Graphical User Interface 55

© 2008 Phyton, Inc. Microsystems and Development Tools

 Key Mapping tab.

ChipProg Device Programmers56

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.4.6.1 General Editor Settings

The General tab of the Editor Options dialog sets up all common options applicable to every Source
 window opened.

Element of dialog Description

Backspace Unindents Checking/clearing this box toggles the Backspace Unindent mode.
See below for explanations.

Keep Trailing Spaces When this box is checked, the editor does not remove trailing spaces
in lines when copying text to the buffer or saving it to a disk. Spaces
are removed when the box is unchecked.

Vertical Blocks If the box is checked, the Vertical Blocks mode is enabled for block
operations.

Persistent Blocks If the box is checked, the Persistent Blocks mode is enabled for block
operations.

Create Backup File If the box is checked then <%CM%> creates a *.BAK file each time a
file is saved in the Source window.

Horizontal Cursor If the box is checked it sets the cursor as a horizontal line, like the
DOS command prompt.

CR/LF at End-of-file If the box is checked, it adds an empty line to the file end when
saving the file to disk (if there is no one yet).

Syntax Highlighting If the box is checked, it forces syntax highlighting of language
constructions.

Highlight Multi-line
Comments

If the box is checked it enables highlighting of multi-line comments.
By default, the window highlights only single-line comments.

Auto Word/AutoWatch Pane If the box is checked, any new Source window will open with the
Auto Word/AutoWatch pane at its right and the automatic word
completion function will be enabled.

Full Path in Window Title If the box is checked, the Source window caption bar displays the full
path to the opened file.

Empty Clipboard Before
Copying

If the box is unchecked, then previously kept data remains retrievable
after copying to the clipboard.

Convert Keyboard Input to
OEM

If the box is checked, the Source window converts the characters
that you input in the window from the MS Windows character set to
the OEM (national) character set corresponding to your national
version of the Windows operating system. Also, see note below.

AutoSave Files Each … min If the box is checked, <%CM%> will save the file being edited every
‘X’ minutes, where ‘X’ is a settable constant chosen by the user.

Tab Size Sets the tabulation size for the text display. The allowable value
ranges from 1 to 32. If the file being edited contains ASCII tabulation
characters, they will be replaced with a number of spaces equivalent
to the tabulation size.

Undo Count Sets the maximum number of available undo steps (512 by default). If
this does not suffice, you can set a value of up to 10000 steps.
However, larger values increase the editor’s memory requirement.

Automatic Word Completion If the Enable box is checked, it allows the automatic word completion
function. The Scan Range drop-down list sets the number of text
lines to be scanned by the automatic word completion system.

Indenting Toggles automatic indenting on/off for a new line that is created when
you press Enter.

Note. You should check the Convert Keyboard Input to OEM box only if you are going to type something
in the Source window when working with a file coded in the OEM character set. If you need only to display
such a file, specify the Terminal font for the Source window in the Fonts tab of the Environment dialog:
select Editor in the Windows list and press the Define Font button.

The Backspace Unindent mode establishes the editing result from pressing the Backspace key in the
following four cases, when the cursor is positioned at the first non-space character in the line (there are
several spaces between the first column of the window and the first non-space character):

Backspace Unindent enabled Backspace Unindent disabled

Insert mode Any preceding blank spaces in the
line are deleted. The rest of the line
shifts left until its first character is in
the first column of the window.

One space to the left of the cursor is
deleted. The cursor and the rest of the
line to the right of the cursor shift one
position left.

Overwrite mode The cursor moves to the first column
of the window. The text in the line
remains in place.

Only the cursor moves one position
left. The text in the line remains in
place.

Graphical User Interface 57

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.4.6.2 The Editor Key Mapping

 You can manage the list of available editor commands with the Key Mappings tab of the Editor Options
dialog. You can add and delete editor commands, assign (or reassign) hot keys for new commands and for
built-in ones.

The left column of the list contains command descriptions. Command types, corresponding to the
command descriptions, are in the second column. (Command means a built-in ChipProgUSB command;
Script ‘XXX’ means an added user-defined command). Two columns on the right specify the hot key
combinations to invoke the command, if any.

Element of dialog Description

Add Opens the Edit Command dialog for adding a new command to the list and
setting up the command parameters.

Delete Removes a selected user-defined command from the list. Any attempt to
remove a built-in command is ignored.

Edit Opens the Edit Command dialog to change the command parameters. For
built-in commands, you can only reassign the hot keys (the Command
Description and Script Name boxes are not available).

Edit Script File Opens the script source file of this command in the Script Source window.

Creating new commands

To create a new command, you should develop a script for it. In fact, you add this script to the editor, not
the command. This means that your command is able to perform much more complex, multi-step actions
than a usual editor command. Moreover, you can tailor this action for your convenience, or for a specific
work task or other need. Your scripts may employ the capabilities of the script language with its entire set
of built-in functions and variables, text editor functions and existing script examples.

A script source file is an ASCII file. To execute your command, the editor compiles the script source file.
Note that before you can switch to using the script which you have been editing, you must first save it to
the disk so that ChipProgUSB can compile it.

Script source files for new commands will reside only in the KEYCMD subdirectory of the ChipProgUSB
system folder. Several script example files are available in KEY CMD. For more information about
developing scripts, see Script Files.

4.3.4.6.2.1 The Edit Key Command Dialog

This dialog Edit command sets parameters for a new command or for existing ones.

Element of dialog Description

Command
Description

Enter the command description here (optional). Text placed in this box will be
displayed in the list of commands for easier identification of the command.

Script Name The name of the script file that executes this command.

Define Key 1
Define Key 2

Opens the specialized dialog box where you can assign two key combinations
to a couple of hot keys.

ChipProg Device Programmers58

© 2008 Phyton, Inc. Microsystems and Development Tools

The script source files for commands will reside only in the KEYCMD subdirectory of the ChipProgUSB
system folder. Enter the file name only, without the path or extension.

Notes

1. You should not specify the combinations reserved by Windows (like Alt+– or Alt+Tab).

2. We do not recommend assigning the combinations already employed by commands in the Source

window or ChipProgUSB, because then you’ll have fewer ways to access these commands. Some
examples are Alt+F, Shift+F1, Ctrl+F7, which are commands that open the application menus. Others
are the local menu hot keys of the editor window.

3. You can use more than one control key in the keystroke combinations. For example, you can use Ctrl
+Shift+F or Ctrl+Alt+Shift+F as well as the Ctrl+F combination.

4. For some built-in commands, the hot keys cannot be reassigned (for example, the keys for moving the
cursor).

4.3.5 The Commands Menu

This menu invokes main commands (or functions) that control the programming process, as well as
some service commands.

Command Description

Blank Check This command invokes the procedure of checking the target device
before programming to make sure that it is really blank.
Programming of some memory devices does not require erasing
them before re-programming. For such devices the Blank Check
command is blocked and it is shown grayed out on the screen.

Program
This command invokes the procedure of programming the target
device, e.g. writes the contents of the buffer into the target device’s
cells.

Verify This command invokes the procedure of comparing the information
taken from the target device with the corresponding information in
the buffer.

Read This command invokes the procedure of reading the content of the
target device’s cells into an active buffer.

Erase This command invokes the procedure of erasing the target device.
Some memory devices cannot be electrically erased. In this case the
Erase command is blocked and is grayed out on the screen

Auto Programming This command invokes the procedure of AutoProgramming.

Local menu Opens the local menu of active window.

Calculator Opens the Calculator dialog, which performs calculator functions.

Graphical User Interface 59

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.5.1 Calculator

A prime purpose of the embedded calculator is to evaluate expressions and to convert values from one
radix to another. You can copy the calculated value to the clipboard.

Element of dialog Description

Expression The text box for entering an expression or number.

Copy As Specifies the format of results that will be copied to the clipboard.

Signed Values If this box is checked the result of a calculation will be interpreted and
displayed as a signed value (for the decimal format only).

Display Leading
Zeroes

If this box is checked, binary and hexadecimal values retain leading zeroes.

Copy Copies the result to the clipboard in the format set by the Copy As radio
button.

Clr Clears the Expression text box.

Bs Deletes one character (digit) to the left of the insertion point (Backspace).

0x Inserts "0x".

>> Shifts the expression result to the right by the specified number of bits.

<< Shifts the expression result to the left by the specified number of bits.

Mod Calculates the remainder of division by the specified number.

While you are typing the expression in the Expression drop-down list box ChipProgUSB tries to evaluate
the expression and immediately displays the result in different formats in the Result area. Statuses of the
Copy As radio button and two check boxes in this area control the result format.

You can assign values to program variables and SFRs by typing an expression that contains the
assignment. For example, you may type SP = 66h and the value of 66h will be assigned to SP.

Examples of expressions:

0x1234

-126

main + 33h

(float)(*ptr + R0)

101100b & 0xF

ChipProg Device Programmers60

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.6 The Script Menu

The ChipProgUSB is featured with the tools known as an embedded script language. This mechanism is
intended for automation of the programming operation, mastering complex operations that include both the
programmer itself and the programmer operator's actions. The ChipProgUSB enables composing scripts files
(SF) and executing them.

This Script menu contains a few commands associated with script files. The commands can be configured
by the ChipProg user and the list can be expanded by adding a new item (command). To add a new item,
place a script file into the current folder or into the ChipProgUSB installation folder. The first non-empty line
of any script file should contain three slashes followed by the text that will appear in the Scripts menu:

/// Menu item text

When ChipProgUSB builds the Scripts menu, it searches the current folder and its installation folder for all *.
CMD files that contain '///' in the first line (remember that '//' denotes the beginning of the single-line
comment) and inserts the text following '///' into the Scripts menu.

When you select a Scripts menu item and click the Start button, ChipProgUSB launches the selected
script.

Button Command Description

Start... Opens the Script Files dialog from which you can

New Script Source Create a new Script File text.

Open Watches
window

Opens the Watches window.

Add watch... Add watch to the Watches window .

Editor window Opens a list of the commands to Compose a new, Open, Save,

Save as, Print a script file. of the Editor window.

Text Edit Edit a list of the commands for editing a selected Script File

Example Scripts Invokes the

Help on this menu

Working with scripts is describe in the Script files topics.

4.3.7 The Window Menu

This menu lets you control how the windows are arranged within the computer screen. The list of currently
opened windows is shown in the lower part of the menu. By choosing a particular window name in this list
you immediately activate it and bring it to the foreground of the computer screen.

Command Description

Tile Arranges all windows without overlap. Makes the window sizes
approximately equal.

Tile Horizontally Arranges the windows horizontally without overlap. Makes the window size
as close to each other as possible.

Cascade Cascades the windows.

Arrange Icons Arranges the icons of the minimized windows.

Close All Closes all windows.

Graphical User Interface 61

© 2008 Phyton, Inc. Microsystems and Development Tools

4.3.8 The Help Menu

This menu gives access to the help system. See also, How to Get On-line Help.

Command Description

Contents Opens the contents of the help file.

Search for Help on Opens the dialog for searching the tool's help system for the content,
index and keywords.

Phyton Adapters Opens the HTML file, which includes adapters' part numbers, their short
descriptions and wiring diagrams.

Visit Phyton website Open the www.phyton.com site in your default Internet browser.

Check for updates Opens the Update Checking dialog that directly links your computer to
the Phyton download webpage.

Send e-mail message to
Phyton

Opens the default email client to compose a message to Phyton.

About ChipProg The box displays: the ChipProgUSB and the ChipProg Windows shell
software version numbers; the selected target device type and the
device manufacturer.

4.4 Windows

The ChipProgUSB enables opening the following types of windows by means of the View menu:

· Program manager

· Device and Algorithm Parameters' Editor

· Buffer

· Device Information

· Console

Plus it can operate with two types of windows associated with the ChipProgUSB script files:

· Editor
· Watches

4.4.1 The Program Manager Window

The Program Manager window is the major control object on the screen from which an operator
controls the ChipProg . While some windows can be closed in a process of programming this one is
supposed to be always open and visible.

The window includes three tabs opening three group of settings and status indicators:

ChipProg Device Programmers62

© 2008 Phyton, Inc. Microsystems and Development Tools

The Project Manager tab

The Option tab

The Statistics tab

The Project Manager and Options tabs look different and enable different settings for the ChipProg
programmers working in single-programming and multi-programming modes. These tabs are
identical for the ChipProg-G4 gang programmer and for the ChipProg-48, ChipProg-40 and
ChipProg-ISP programmers when they are configured to work in the multi-programming mode.

4.4.1.1 The Program Manager tab

The tab serves for setting major programming parameters, executing the programming operations and
displaying the ChipProg statuses.commands while

Element of dialog Description

Buffer:

The field Buffer displays the active buffer to which the
programming operations (functions) will be applied. A full list of
open buffers is available here via the drop-down menu.

Functions

This field lists the tree of the functions relevant to the selected
target device. Some functions represent the ChipProg commands
while others integrate a few sub-functions and can be expand or
collapsed. Double clicking on the function invokes the command
and is equivalent to single clicking the Execute button (see
below).

Blank check Checks if the target device is blank

Program Programs the target device (writes the information from an active buffer to
the target device).

Read Reads out the content of the target device to an active buffer.

Verify Compares the content of the target device and an active buffer

Auto Programming
Executes a preset sequence of operations (batch operations) settable in
the Auto Programming dialog. The Edit Auto button opens this dialog.

Graphical User Interface 63

© 2008 Phyton, Inc. Microsystems and Development Tools

Addresses Here you can set the addresses for the buffer and the target device
to which the programming functions will be applied.

Device start: The very first address in the target device's physical memory which will be
programmed or read.

Device end: The very last address in the target device's physical memory which will be
programmed or read.

Buffer start: The very first address in the buffer memory from which the data will be
written to the target device or to which the data will be read from the
device.

Execute

There are three alternative ways to activate a highlighted function:
a) to click the Execute button; b) to double click on the function line; c)
to push the Enter button on the PC keyboard.

Repetitions:

Any function can be executed repeatedly. The number of
repetitions can be set here.

Edit Auto Clicking on this button opens the Auto Programming dialog.

Operation Progress

In this field the ChipProgUSB displays the current operation
progress bar and the operation status (OK, failed, etc.).

4.4.1.1.1 Auto Programming

Each device has its own routine set of programming operations that usually includes: Erasing, Blank
Checking, Programming, Verifying and often Protecting against unauthorized reading. The ChipProgUSB
stores default batches of these programming operations for each single supported device and allows the
invocation of the batch of operations just by a mouse click or pressing the Start button on the programmer
panel. It also enables the customization of a sequence of elementary functions (operations) via the Auto
Programming dialog. To open this dialog click on the Edit Auto button.

The tree including all the functions available for the chosen target device is shown in the right pane
Available functions. To include a function to the batch highlight it in the right pane and click the Add

ChipProg Device Programmers64

© 2008 Phyton, Inc. Microsystems and Development Tools

button - the function will appear in the left pane Selected functions. The functions will be then
executed in the order in which they are positioned in the Selected functions pane, from the top to
the bottom. To correct the function batch highlight the command to be removed and click the
Remove button.

4.4.1.2 The Options tab

The tab serves for setting additional programming parameters and options:

Element of dialog Description

Split data

The group of radio buttons in the Split data field allows the
programming of 8-bit memory devices to be used in the
microprocessor systems with the 16- and 32-bit address and data
buses. To do this the buffer content should be properly prepared to
split one memory file into several smaller file.

Options

Insert test If this box is checked the ChipProgUSB will test whether each of
the device leads is reliably squeezed by the programming socket
contact. If some contact is bad a current operation will be
blocked.

Check device ID By default this option is always on and the ChipProg always
verifies the target device identifier given by the device
manufacturer. If the box is unchecked the program will skip the
device ID checking.

Reverse bytes order If this box is checked the ChipProgUSB will sweep the byte order
in the 16-bit word while it executes the Read, Program and
Verify operations. This option does not affect the data in the
ChipProg buffers, as they remain the same after the file loading.

Blank check before
program

If this box is checked the ChipProgUSB will always check if the
target device is blank before programming it.

Verify after program If this box is checked the ChipProgUSB will always verify the
device content right after it was programmed.

Verify after read If this box is checked the ChipProgUSB will always verify the
device content right after it was read out.

Auto-Detect presence of
device in the socket

If this box is checked the ChipProgUSB will test whether each of
the device leads is reliably squeezed by the programming socket
contact. If so a preset programming function (operation) or Auto
Programming will start. Otherwise, if some contact is bad a
current operation will be blocked.

On Device Auto-Detect or
'Start' Button:

The group of radio buttons. The checked radio button defines what
the ChipProg will do upon the the drive auto-detect or pushing the
'Start' button.

Graphical User Interface 65

© 2008 Phyton, Inc. Microsystems and Development Tools

4.4.1.2.1 Split data

The group of radio buttons in the Option tab in the Split data field allows programming 8-bit memory
devices to be used in the microprocessor systems with the 16- and 32-bit address and data buses.
To do so the buffer content should be properly prepared to split one memory file iinto several smaller
files. The data splitting enable the conversion of the data read from 16- or 32-bit devices to make file
images for writing them to memory devices with the byte organization.

Radio button Description

No split This is a default option. A whole buffer is not split and is considered
as a whole one byte data array.

Even byte The data in the buffer are considered as an array of 16-bit words.
The buffer-device operations are conducted with even bytes only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location also with the address=0, the byte from the device with the
address=1 will be placed to the buffer location with the address=2,
etc.

Odd byte The data in the buffer are considered as an array of 16-bit words.
The buffer-device operations are conducted with odd bytes only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location also with the address=1, the byte from the device with the
address=1 will be placed to the buffer location with the address=3,
etc.

Byte 0 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #0 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location also with the address=0, the byte from the device with the
address=1 will be placed to the buffer location with the address=4,
etc.

Byte 1 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #1 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=1, the byte from the device with the
address=1 will be placed to the buffer location with the address=5,
etc.

Byte 2 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #2 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=2, the byte from the device with the
address=1 will be placed to the buffer location with the address=6,
etc.

ChipProg Device Programmers66

© 2008 Phyton, Inc. Microsystems and Development Tools

Byte 3 The data in the buffer are considered as an array of 32-bit words.
The buffer-device operations are conducted with the byte #3 only.
For example, if the programmer reads the device from the
address=0, the byte with this address will be placed to the buffer
location with the address=3, the byte from the device with the
address=1 will be placed to the buffer location with the address=7,
etc.

4.4.1.3 The Statistics tab

This tab opens the fild displaying the programming session statistical results - Total number of
devices that were programmed during the session, what was the yield (Good) and how many
devices have failed (Bad). Getting such statistics is quite helpful when you need to program a series
of same type devices. It is important to remember that the statistical counters are affected by
executing the Auto Programming only, as execution of other functions makes no effect on the
statistics.

Element of dialog Description

Clear statistics This button resets the statistics..

Device Programming
Countdown

Normally the Total counter increments after each Auto
Programming; the , Good and Bad counters also count up. The
ChipProgUSB reverses the counters to decrement their content (to
count down).

Enable countdown If the box is checked the ChipProgUSB will count the number of
the programmed devices down.

Display message when
countdown value
reaches zero

If the box is checked the ChipProgUSB will issue a warning when
the counter Total is zeroed.

Reset counters when
countdown value
reaches zero

If the box is checked the ChipProgUSB will reset all the counters
when the counter Total is zeroed.

Count only successfully
programmed devices

If the box is checked the ChipProgUSB will count only the
successfully programmed (Good). All other statistics will be
ignored.

Set initial countdown
value

Clicking on the button opens the box for entering a new Total
number that then will be decremented after each Auto
Programming.

Graphical User Interface 67

© 2008 Phyton, Inc. Microsystems and Development Tools

4.4.2 The Device and Algorithm Parameters window

The Device and Algorithm Parameters window is intended to display and prepare (where possible)
the device’s internal parameters and settings, which can then be programmed into a target device by
executing the Program command in the Program Manager window.

The parameters displayed into this window are split in two groups: Device Parameters and Algorithm
Parameters. The groups are separated by a light blue stripe

Device Parameters This group includes parameters that are specific for each selected device,

such as: sectors for flash memory devices, lock and fuse bits,
configuration bits, boot blocks, start addresses and other controls for
microcontrollers. Usually these parameters represent certain bits in a
microcontroller’s Special Function Registers (SFRs). Some of these SFRs
can be set in the ChipProg buffers in accordance with device manufacturers’
data sheets. But setting the parameters in the Device and Algorithms
Parameters window is much easier and more intuitive. It is impossible to
specify absolutely all features that may appear in future devices, and,
therefore, new parameters for these new devices.

Algorithm
Parameters

This group includes parameters of the programming algorithm for the
selected device – including the algorithm type and editable programming
voltages.
.

ChipProg Device Programmers68

© 2008 Phyton, Inc. Microsystems and Development Tools

IMPORTANT NOTE!

Any changes made in the ‘Device and Algorithm Parameters’ window do not
immediately cause corresponding changes in the target device. Parameter settings
made within this window just prepare a configuration of the device to be programmed.
Physically, the programmer makes all these changes only upon executing an
appropriate command from the ‘Program Manager’ window.

The window is separated into three columns: 1) the parameter's name, 2) its value or setting, 3) a
short description. Names of the editable parameters are shown in blue; other names are shown in
black. Default values in the column Value are shown in black; after changing a parameter the new
value will be shown in red. If the value is too long to display the window represents it as three dot
signs (‘…’). If these dots are red it means that the parameter has been edited.

In order to edit a parameter, double click its name. Some editable parameters are represented by a set
of check boxes, some require to be typed in prompt boxes.

The local Device and Algorithm Parameters window's toolbar includes a few buttons positioned on
the top of the window:

Toolbar button Description

Edit Clicking on this button opens the editing dialog to modify the
highlighted parameter in the format, most convenient for this
parameter. A double click on the highlighted parameter also opens
the editing dialog.

Min.Value If the parameter to be modified has an allowed range in which it
may be set, then clicking on the Min.Value button sets the minimal
allowed value to the highlighted parameter.

Max.Value If the parameter to be modified has an allowed range in which it
may be set, then click on the Max.Value button to set the maximal
allowed value to the highlighted parameter.

Default Click on this button returns the default value to the highlighted
parameter.

All Default Click on this button returns the default values to all the parameters
displayed in the window.

Depending of the parameter's type ChipProgUSB offers the most convenient format for the
parameter editing:

Method of editing Description

Graphical User Interface 69

© 2008 Phyton, Inc. Microsystems and Development Tools

Drop-down menu When the parameter value may be picked from a few preset values
the dialog offers a drop-down list with these values. Highlight a new
value in the list and click OK to complete the editing. For example,
some microcontrollers can be programmed to work with different
types of the clock generators, so the menu prompts to select one of
them.

Check Box dialog When some options can be set or reset the dialog appears in a
form of several boxes indicating the default or lately set option
statuses. To toggle the option check or uncheck the box. For
example, some microcontrollers allow the locking of a particular
part of the memory by setting several lock bits, so the menu
prompts to check the lock bits represented as a set of check
boxes.

Customizing the
parameter

When the parameter value may be set freely in an allowed range
the dialog offers a box for entering a new value and a history list
displaying a few recently set values. The dialog prompts with the
min and max values that can be set for each parameter and
restricts to enter the value out of the allowed range. This type of
editing is in use for setting custom values for Vcc and Vpp
voltages.

ChipProg Device Programmers70

© 2008 Phyton, Inc. Microsystems and Development Tools

4.4.3 Buffer Dump Window

 The Buffer Dump window displays the contents of the memory buffer.

 ChipProg supports a flexible buffer structure:

· You can create an unlimited number of buffers. The number of buffers that you can
open is limited only by the available computer RAM.

· Every buffer has a certain number of sub-levels depending on the type of target device.
Each sub-level is associated with a specific section of a target device's address space.
For example, for the Microchip PIC16F84 microcontroller every buffer has three sub-
levels: 1) code memory; 2) EEPROM data memory; 3) user's identification sub-level.

This flexible structure allows for easy manipulation of several data arrays that are mapped to
different buffers. To open a Buffer Dump window, click on the command Main Menu > View >
Buffer Dump.

The picture above displays three Buffer Dump windows representing three parts of the same
buffer:

· #1 (the largest) shows the buffer contents beginning at address 0h;
· #2 shows the same buffer contents beginning at the same address but displaying data in

decimal format;
· #3 window shows the data beginning at address 200h.

The left-most column in the windows above shows absolute addresses of the first cell in a row. The
addresses always increment by one byte: 0, 1, 2…. Each address is followed by a semicolon (:).
When you resize the window it automatically changes the addresses shown in the address column
in accordance with the number of codes or data that go in one line. Some windows may be split
into two panes – left pane for data in a selected format and right pane showing the same data in
ASCII format. The window has a toolbar for invoking setting dialogs and commands. Right under
the toolbar the program displays a full path to a loaded file and a checksum of the dump.

Local menu and Toolbar

The local menu, which can be opened by the right mouse click, includes the Buffer Dump window
context commands and dialog calls. Most, but not all, of the local menu lines are duplicated by the local
toolbar buttons displayed at the top of the window. Here are the local menu and toolbar items:

Menu Command or Call Toolbar
button

 Description

New address... Addr Opens the Display from address dialog.

Load file to buffer... Load Opens the Load window Dump dialog.

Save data to file... Save Opens the Save window Dump dialog.

Configure buffer... Configure
buffer

 Opens the Configuration Window Dump dialog.

Window setup... Setup Opens the Window Dump Setup dialog.

View only, edit disabled View

By default editing in the buffer dump windows is
disabled and you can only view the data. If the box is
unchecked the editor will be enabled. Then you may
overtype the value under the cursor.

Modify data
Modify

Opens the Modify data dialog. This call is enabled only
when the View only, edit disabled is off.

Operations with memory
blocks

Block Opens the Operations with memory blocks dialog.

Swap fields
No button

This command allows swapping the cursor position
between the right and left window panes.

Graphical User Interface 71

© 2008 Phyton, Inc. Microsystems and Development Tools

4.4.3.1 The 'Configuring a Buffer' dialog

The dialog allows configuring the buffer dumps in the most convenient format and name/rename
open buffers. By default the first opened buffer is named ‘Buffer #0’. The next buffer gets the name
‘Buffer #1’, and so on. You can, however, rename the buffer as you wish.

By default each buffer has a minimal size of 128K RAM in a PC and by default the ChipProgUSB
program fills the buffer with a predefined value (usually 0FFh). You can customize these buffer
settings - check the Custom radio button and type in the pattern to fill the buffer.

ChipProg Device Programmers72

© 2008 Phyton, Inc. Microsystems and Development Tools

4.4.3.2 The 'Buffer Setup' dialog

Graphical User Interface 73

© 2008 Phyton, Inc. Microsystems and Development Tools

The dialog allows controlling the data presentation in the Buffer Dump window. You can open the dialog
using the windows local menu (the Windows Setup command) or by clicking the Setup button on the
window toolbar.

Element of dialog Description

Buffer:

The field displays a list of all open buffers. The programming
functions will be applied to the active one.

Display Format Is represented by three radio buttons. Here you can select one of
the formats for the data displayed: binary, decimal or hexadecimal.

Display Data As: Is represented by four radio buttons. Here you can select the data
presentation format in the buffer: 1, 2, 3 or 4 Byte.

Options
The options here customize the display format.

ASCII pane

If the box is checked the right pane will display ASCII characters
corresponding to the data in the buffer dump.

Display checksum If the box is checked the calculated checksum will be displayed in
the blue strip over the data dump, right under the window local
toolbar.

Limit dump to sub-layer
size

If the box is checked the window dump will display a part of
memory equal to the active sub-layer's size.

Signed decimal and hex
values

If the box is checked the most significant bit (MSB) in the data
shown in the binary or hexadecimal formats will be treated as a
sign. If MSB=1 the data is negative, if MSB=0 they are positive.

Always display '+' or '-' This is a sub-setting for the Signed decimal and hex values option.
If both boxes are checked then the signs '+' and '-' will be
displayed.

Leading zeroes for decimal
numbers

If the box is checked then each decimal data will be shown with a
number of zeros before the first significant digit - for example the
value of 256 will be presented as 00000256.

Reverse bytes in words (
LSB first)

If the box is checked then the order of bytes in words will be
reversed, e.g. the MSB will follow the LSB.

Reverse words in dwords If the box is checked then the order of 16-bit words in 32-bit words
will be reversed.

Reverse dwords in qwords If the box is checked then the order of 32-bit words in 64-bit words
will be reversed.

Non-printable ASCII
characters

The characters from the ranges 0х00...0х20 and 0х80...0хFF are
non-printable. The options here customize presentations of non-
printable ASCII characters in the ASCII pane of the buffer dump
window.

Replace characters
0х00...0х20

If the box is checked then all the characters belonging to the range
0х00...0х20 will be replaced with the character dot ('.') or space (' '). The
pair of toggling radio buttons Replace with: sets the replacement
character - dot ('.') or space (' ').

Replace characters
0х80...0хFF

If the box is checked then all the characters belonging to the range
0х80...0хFF will be replaced with the character dot ('.') or space (' '). The
pair of toggling radio buttons Replace with: sets the replacement
character - dot ('.') or space (' ').

ChipProg Device Programmers74

© 2008 Phyton, Inc. Microsystems and Development Tools

4.4.3.3 The 'Display from address' dialog

The dialog enables setting a new address that will become the first address of the visible part of the Buffer
Dump window.

Element of dialog Description

Type new address to
display from:

Here you may enter any address within the allowed range.

History Displays the list of previously set addresses. Here you can pick one for
displaying the buffer dump.

4.4.3.4 The 'Modify Data' dialog

The dialog enables editting the data in the Buffer Dump window. The dialog can be invoked only when the
View button on the window's toolbar if off, otherwise the editing is blocked. To modify particular data in the
buffer appoint the location by a cursor and click the Modify button on the window's toolbar. Then enter
a new data value in the pop-up box or pick one from the history list. Or, alternatively, appoint the
location by a cursor and type over the new data on the PC keyboard.

Graphical User Interface 75

© 2008 Phyton, Inc. Microsystems and Development Tools

4.4.3.5 The 'Memory Blocks' dialog

 The ChipProgUSB program allows complex operations with memory blocks. This dialog controls operations
with blocks of data within one selected buffer or between different buffers.

The dialog box splits in three columns. The Source parameters, shown in the left column, specify the source
memory area for the operations shown in the middle column. The operation’s result will be placed in the area
specified by the Destination shown in the right column. By default the destination is equal to the source space.
Two operations – Fill and Search - do not require a destination address so the dialog disables the Destination
radio button if these two operations are chosen.

Element of dialog Description

Start Address
(of the Source)

The start address of the memory area in the selected Source buffer, to
which the operation will be applied.

End Address
(of the Source)

The memory area’s end address. It can be set only for the Source. After
the source address range is defined, the program automatically calculates
the destination area’s end address.

Full Range
(of the Source)

Sets the start and end addresses equal to the entire address space of the
selected target device.

Start Address
(of the Destination)

The start address of the memory area in the Destination buffer where
the result of the chosen Operation will be placed to.

The following operations are available through this dialog. Each operation starts when you click OK in the
dialog box. (see notes below).

Operation Description

Fill with Value Fills the source buffer with a value (or a sequence of values) specified in
the text box at the right.

Search for Data Searches the source memory area for a particular value (or a sequence of
values) specified in the text box at the right.

Copy Copies a specified area of memory to a new destination address. The
block can be copied within the same address space or to another one.

Compare Compares contents of the specified source and destination memory
areas. The sizes of the source and destination areas are equal. If there’s
a mismatch, the mismatch message box will require permission to
continue the comparison.

Invert Inverts the selected source area contents bit-wise and places the results
in the destination area.

Calculate Checksum Calculates the checksum, as a 32-bit value, for the source area of
memory. The calculation is done by simple addition. See the note below.

Negate Result If the box is checked then a checksum, calculated as a 32-bit value by
simple addition, will be then subtracted from zero (this is a known method
of the checksum calculation).

Write Result to
Destination

If this box is checked a calculated 32-bit checksum will be written to the
destination sub-level beginning at a specified destination Start Address.
If this box is cleared the checksum will be displayed as a message only.

AND with Value Performs bit-wise AND operation on the contents of the specified source
memory locations with the operand specified in the text box on the right
and places the results in the destination. See notes below.

OR with Value Performs bit-wise OR operation on the contents of the specified source
memory locations with the operand specified in the text box on the right
and places the results in the destination.

XOR with Value Performs bit-wise XOR operations on the contents of the specified source
memory locations with the operand specified in the text box on the right
and places the results in the destination.

Notes

1. The source and destination memory areas may overlap. But, since operations with memory blocks are
carried out using a temporary intermediate buffer, the overlap does not corrupt the results.

2. The Copy and Compare commands use the blocks specified in the Source address space and the
Destination address space.

3. The checksum is calculated as a 32-bit value by simple addition. If a memory space has byte organization,
then 8-bit values will be added. If it has word organization then 16-bit values will be added.

4. Logical operations (AND, OR, XOR) are performed with the contents of the Source address space, while the
operation result will be written to the Destination address space. The program takes care of converting the
operands to the appropriate memory size for a selected type of memory (16-bit for the Prog, Data16, Reg
and Stack memory, 8-bit for the Data8 memory).

ChipProg Device Programmers76

© 2008 Phyton, Inc. Microsystems and Development Tools

4.4.3.6 The 'Load File' dialog

The dialog defines parameters of the file to be loaded to the buffer.

Element of dialog Description

File Name: Enter a full path to the file in this box, pick the file name from a drop-down
menu list or browse for the file on your computer or network.

File Format:

The format of the file to be loaded can be selected here by checking one
of the radio buttons in the File Format field of the dialog.

Buffer to load file to: Select the buffer in which the file will be loaded by checking one of the
Buffer# radio buttons. There may be just one such button.

Layer to load file to:
The Buffer to load file to can have more than one memory layer. Select
the layer in which the file will be loaded by checking one of the radio
buttons. There may be just a single button available for choosing.

Start address for binary
image:

Files in Binary file format do not carry any address information and
are required to define the start address for the loading. If the file to
be loaded is a binary image enter the start address in the box here.

Offset for loading
address:

Files in any formats, except the Binary file format, can carry the
information about the start address for the loading. If the file to be
loaded is not a binary image enter the offset for the file addresses in
the box here. The offset can be positive or negative.

4.4.3.6.1 File Formats

The ChipProgUSB program supports a variety of file formats that can be loaded to the ChipProg
buffers.

File format Description

Standard/Extended Intel
HEX (*.hex)

The Intel HEX file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
ChipProgUSB loader supports both Standard and Extended Intel
HEX format.

Binary image (*.bin) The binary image includes the data to be loaded only. These data
will be loaded to the buffer beginning from a specified start
address.

Graphical User Interface 77

© 2008 Phyton, Inc. Microsystems and Development Tools

Motorola S-record (*.
hex, *.s, *.mot)

The Motorola S-record is a text file, each string of which includes
the beginning address to load the data to the buffer, the data to
load, checksums for the string and some additional information.
The ChipProgUSB loader supports all kinds of the Motorola S-
records with the extensions .hex, .s, .mot.

Altera POF (*.pof)
The Altera POF-file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
format is mostly used for programming PALs and PLDs.

JEDEC (*.jed) This format is used for programming PALs and PLDs. The JEDEC-
file includes the beginning address to load the data to the buffer,
the data to load, test-vectors and some additional information.

Xilinx PRG (*.prg) The Xilinx PRG-file is a text file, each string of which includes the
beginning address to load the data to the buffer, the data to load,
checksums for the string and some additional information. The
format is used for programming the Xilinx PLDs.

Holtek OTR (*.otp) This format is presented by Holtek company. The OTP-file includes
the beginning address to load the data to the buffer, the data to
load, checksums for the string and some additional information.

Angstrem SAV (*.sav) This format is presented by Angstrem company (Russia). The
SAV-file includes the beginning address to load the data to the
buffer, the data to load, checksums for the string and some
additional information.

ASCII Hex (*.txt) The ASCII TXT-file includes the beginning address to load the data
to the buffer, the data to load, checksums for the string and some
additional information.

4.4.3.7 The 'Save File' dialog

The dialog defines parameters of the file to be saved from the buffer.

Element of dialog Description

File Name: Enter a full path to the file in this box, pick the file name from a
drop-down menu list or browse for the file on your computer or network.

Addresses Start and End Addresses define the buffer data space that will be
saved in the File. For saving an entire buffer click the All button.

File Format:

The format of the file to be saved can be selected here by checking one
of the radio buttons in the File Format field of the dialog.

Buffer to save file from:
Select the source buffer from which the file will be saved by checking
one of the Buffer# radio buttons. There may be just a single button
available for choosing.

ChipProg Device Programmers78

© 2008 Phyton, Inc. Microsystems and Development Tools

Sub-level to save file
from:

The Buffer to save file from can have more than one memory layer.
Select the source layer by checking one of the radio buttons. There may
be just a single button available for choosing.

4.4.4 The Device Information window

This window displays the type of selected target device and a list of programming adapters that fit all
available packages for the selected device. For example the picture below shows all Phyton
adapters available for the selected PIC microcontroller. The Socket scheme pictograms below show
the correct positions of a DIP-packaged 40-pin PIC chip and the adapter board into a 48-pin ZIF
socket (for the ChipProg -48 programmer).

The adapter part numbers are linkable and the links being clicked opens the adapters.chm file with
a description and wiring diagram of the chosen adapter. The cable adapters for in-system
programming are also included into the adapters.chm file. There are some peculiarities that such
ISP adapters use depending on the target device type.

4.4.4.1 Phyton programming adapters

The adapters.chm file includes short descriptions of the Phyton programming adapters and their
wiring diagrams. Having the adapter diagram a ChipProg user can master it is own adapter or to find

Graphical User Interface 79

© 2008 Phyton, Inc. Microsystems and Development Tools

the adaptor available from a third party, which can be used as a replacement for the Phyton brand
adapter.

The adapters diagram are presented in a table form, where the rows show connections of the
elements installed on the adapter transition board and the columns (from the left to right) represent:

1st column - Pin numbers of the dual-row pins pluggable to the programmer ZIF socket
2nd column - Pin numbers of the ZIF socket installed on the adapter top
3rd, 4th, 5th, etc. - Pin numbers of the passive and active components installed on the adapter

board.

See an example of the AE-P44-A32/64 adapter connection table below:

Pin# of the dual-row
40-pin plug

(ChipProg ZIF socket)

Pin# of the PLCC
40-pin adapter socket

74HC14
latch

C1 (.1uF) C2 (.1uF)

1 2

2 4

3 6

4 28

5 29

6 9

7 10

8 11

9 12

10 40

11 7

12 13

13 14

14 16

15 17

16 18

17 19

18 20

19 21

20 22,30,42 7 1 1

21 24

22 25

23 26

24 27

25 8

26 31

ChipProg Device Programmers80

© 2008 Phyton, Inc. Microsystems and Development Tools

27 32

28 33

29 34

30 5

31 36

32 35,3,15,23 14 2

33 37

34 38

35 39

36 40

37 41

38 11

- 43 12

39 44 2

40 1

10,13

4.4.4.2 Adapters for in-system programming

The adapters.chm file includes short descriptions of the Phyton programming adapters for in-system
programming (e.g. the programming in the user's equipment) and their wiring diagrams the schematic
of connecting the adapter cables to the target. The cable adapters may have 10 to 20 pin headers to
be connected to the pins or complimentary connectors installed in the user's equipment. The pin
connection is specific for certain target devices. The connection diagrams are presented in a table
form, where the columns (from the left to right) represent:

1st column - Pin numbers of the cable adapter header inputs and outputs
2nd column - Signals of the target device to be connected

As an example see below a schematic of connecting a 10-pin header BH-10 of the Phyton AE-ISP-U1
cable adapter to the Zilog Z8Fxxx microcontroller for in-system programming.

BH10 Z8Fxxxx

1 Vcc
2 RESET
3 GND
4 DBG
5 GND
6

7

8

9

Graphical User Interface 81

© 2008 Phyton, Inc. Microsystems and Development Tools

10

As you can see here not all the BH10 lines should be necessarily used. Only five signals are required
for programming this device and only two of them are used for sending the the programming signals
into the chip - RESET and DBG. The diagrams in the adapters.chm file use the mnemonic of signal
from the device manufacturers' data sheets.

4.4.5 The Console Window

The Console window displays messages generated by the ChipProgUSB program that can be
divided into two groups: the ChipProg error messages and what-to-do prompts. The window stores
messages even if it is closed. You can open it at any time to view the last 256 messages, and get
help for any of them. The error messages are shown in red color, others in black.

The window should be large enough to watch several messages. To save screen space you can
close the Console redirecting all messages to the popping-up message boxes. To do this, go to the
Configure menu > Environment > Misc tab and select the Always Display Message Box option.
Alternatively you can select the Do not open box if Console window opened option, redirecting all
the messages to the Console window.

Click the Help button in the box or to invoke the ChipProg context-sensitive Help topic associated
with the error, or click the Close button and continue after correcting a parameter error.

Local menu and Toolbar

The local menu, which can be opened by the right mouse click, includes the Console window context
commands and dialog calls. Most, but not all, of the local menu lines are duplicated by the local toolbar
buttons displayed at the top of the window. Here are the local menu and toolbar items:

Menu Command or Call Toolbar
button

 Description

Clear Window Clear Deletes all the messages from the window

Help on message MHelp
Opens the context-sensitive Help topic associated with
the error or information in the highligted message

Help on window No button Opens the Console window Help topic

Help on word under
cursor

No button
 Opens the context-sensitive Help topic associated

with the word appointed by the cursor

4.4.6 Windows for Scripts

ChipProgUSB is featured with the windows specifically supporting operations with scripts. That
includes:

· (Script) Editor windows
· Watches windows
· User windows
· I/O Stream windows

These windows cannot be open from the View menu; they can be opened only when you work with
scripts. Operations with these windows are described in the chapter Scripts Files.

ChipProg Device Programmers82

© 2008 Phyton, Inc. Microsystems and Development Tools

5 Operating with ChipProg programmers

The topics included in this chapter briefly describe basic operations with the ChipProg programmers:.

5.1 Inserting devices to a programming socket

Inserting devices in DIP (dual-in-line) packages.

The ChipProg-40, ChipProg-48 and ChipProg-G4 programmers are equipped with 40- or 48-pin ZIF
sockets allowing operating on any DIP-packed devices without additional adapters. They can
accommodate DIP-packed devices with different number of leads (from 4 to 48) and different widths
of the package up to 600 mil. Just a few old DIP-packed devices require special adapters to be
programmed by ChipProgs. The Device Information window prompts if some adapter is required
for the selected device and, if so, it displays the adapter type. The pictogram showing a correct
insertion position of the device is on the programmer at the left of the socket as well as in the
Device Information window. Practically all DIP-packed devices can be inserted in the way shown on
the pictogram. However, there are a few old devices with a non-standard insertion positioning. If
such a device is chosen the Device Information window displays how to insert the device.

Inserting devices in non-DIP packages.

Programming of the devices in SOIC, PLCC, QFP, BGA and other non-DIP packages requires
special adapters. The adapters design allows plugging them into the programmer ZIF sockets. The
Device Information window prompts the adapter type for a selected device.

Any adapter is implemented as a small transition board with two rows of dual-in-line pins pluggable
into the programmer ZIF socket on a bottom side and a ZIF socket of a particular type (SOIC, PLCC,
QFP, BGA, etc.) on a top. The adapter transition board is labeled with a "#1 pin" key mark that helps
to properly position the adapter into the programmer socket. The Device Information window
displays the adapter position into the programmer ZIF socket.

5.2 Auto-detecting the device

If you checked the AutoDetect checkbox on the main window toolbar then a ChipProg programmer
will automatically detect insertion of the device into a programming socket and will check if the
device's leads are reliably squeezed by the socket contacts. In case of the bad contact with any
single lead the programmer blocks further operations and issues a warning that indicates the pin
numbers with bad contacts. This prevents destroying the device or incorrect programming.

The AutoDetect signal can be used for triggering a programming operation by checking the
Auto-Detect presence of device in the socket box in the Options tab of the Program Manager
window. One of the following options can be set here:

· Execute the function selected in the 'Function' list (the Program Manager tab);
· AutoProgramming;
· Execute script.

At this point the AutoDetect trigger replaces the programmer command executed by a mouse click
or pressing the Start button. This significantly speeds up and simplifies programming of the device
series.

Operating with ChipProg programmers 83

© 2008 Phyton, Inc. Microsystems and Development Tools

5.3 Basic programming functions

Sub-topics of this chapter describe all the basic ChipProg-40 and ChipProg-48 operations in a single
programming mode, when a device is programming in the programmer socket. Specific operations for
programming more than one device at one time are described in the Multi- and Gang programming

5.3.1 How to check if a device is blank

1. Select the target device type, pressed the button Select Device in the Main toolbar or select the
command Main menu > Configure > Select device.

2. Insert a device of the selected type into the programmer socket or into the adapter socket.

3. a) Click the Check button on the main toolbar or
 b) Double click on the Blank check function line in the Function list of the Program Manager
window or
 c) Select the Blank check function line in the Function list of the Program Manager window
and click the Execute button or
 d) Select the Main menu > Commands and click on the Blank check line

then wait for the message Checking … OK in the Program Manager window, or for the warning
message if the device is not blank

5.3.2 How to erase a device

1. Make sure the device is electrically erasable. Some devices are not erasable; these may be
programmable once, UV erasable, or over-writable – in this case the Erase button is blocked
(grey out).

2. If the device is electrically erasable:
 a) Click the Erase button on the main toolbar or
 b) Double click on the Erase function line in the Function list of the Program Manager window
or
 c) Select the Erase function line in the Function list of the Program Manager window and click
the Execute button or
 d) Select the Main menu > Commands and click on the Erase line

then wait for the message Erasing … OK in the Program Manager window or for the warning
message if the device is not blank after erasing.

5.3.3 How to program a device

In order to program a blank device you need to perform a few consecutive operations:

· load the file, that you want to write to the device;
· edit the file (if necessary);
· configure the device to be programmed (if necessary);
· write the prepared information into the device and verify the programming.

ChipProg Device Programmers84

© 2008 Phyton, Inc. Microsystems and Development Tools

5.3.3.1 How to load a file into a buffer

1. Select the Main menu > File > Load or click the Load button on the local toolbar of the Buffer
window.

2. In the pop-up dialog box enter the source file name, select the file format, addresses, buffer and
sub-level to load the file to.

3. Wait for the message File loaded: "......" in the Program Manager window or for a warning
message if the file cannot be loaded for some reason.

5.3.3.2 How to edit information before programming

1. If you need to modify source data before writing into the target device, then open the Buffer
Damp window. Never forget that the View button should be released to enable editing.

2. Make necessary changes in the window via the Modify dialog or appoint the data to be modified
and type the new data over the old data.

5.3.3.3 How to configure the chosen device

1. If any parameters displayed in the Device and Algorithm Parameters window can be changed by

editing, their names are shown in blue.

2. Click on the name of the parameters to be changed to open an appropriate dialog. Set a new value
for the parameter or check/uncheck appropriate boxes and click OK. The parameter value will
change its color to red.

3. Continue for other parameters that should be changed. All preset changes will become effective in
the target device only upon programming via the Program Manager programming function.

5.3.3.4 How to write information into the device

1. Click the Options tab in the Program Manager window. Check the options you need. We
recommend that you always check the Blank check before programming and the Verify after
programming check-boxes to make programming more reliable.

2. Click the Program Manager tab. Select the Program line in the Function box, and double click
it to start programming of the primary memory layer (Code) or click the Execute button to do so.
Alternatively, you can do the same by clicking the big Program button or selecting the command
Menu > Commands > Program.

3. Wait for the message Programming … OK in the Operation Progress box of the Program
Manager tab. If an error has occurred the ChipProgUSB issues an error message.

4. Execution of the main Program function (always shown in the beginning of the Function list)
writes a specified buffer layer content to the Code device memory. However, other buffer layers
may exist for the selected device (Data, User, etc.). If more than one buffer layer exists for the
selected device go down to the list of functions, expand those that are collapsed and execute the
Program functions for as many types of memory as the device has (Data, User, etc.). Skip this if
just one memory layer Code exists for the device.

Operating with ChipProg programmers 85

© 2008 Phyton, Inc. Microsystems and Development Tools

5. IMPORTANT! After programming of all the memory layers (Code, Data, User, etc.) you need to
program the options preset in the Device and Algorithm Parameters window, if they have
been modified. Go down to the Device parameters & ID line, expand it if collapsed, select the
Program function and double click it. Continue until every parameter that was changed in the
Device and Algorithm Parameters window is successfully programmed.

6. Some microcontrollers can be protected against unauthorized reading of the written code by
setting a set of Lock bits. Go down to the Lock bits line, expand it if collapsed and double click
the lock bit# lines one by one. You can optionally lock only certain parts of the device memory.
Continue until every lock bit is set.

7. After every operation above make sure that you watch the Ok [xxxxx... Ok] message in the
Operation Progress box of the Program Manager tab. In case you get an error message stop
the programming and troubleshoot the issue.

5.3.4 How to read a device

There are several ways for reading the device content to an active buffer:

 a) Click the Read button on the main toolbar or
 b) Double click on the Read function line in the Function list of the Program Manager window or
 c) Select the Read function line in the Function list of the Program Manager window and click
the Execute button or
 d) Select the Main menu > Commands and click on the Read line

then wait for the message Reading … OK in the Program Manager window or for the warning
message if the device could not be read out.

5.3.5 How to verify programming

There are several ways for checking if the device was programmed correctly:

 a) Click the Verify button on the main toolbar or
 b) Double click on the Verify function line in the Function list of the Program Manager window
or
 c) Select the Verify function line in the Function list of the Program Manager window and click
the Execute button or
 d) Select the Main menu > Commands and click on the Verify line

then wait after that which wait for the message Verifying … OK in the Program Manager window
or for the warning message if the device failed during the verification process.

5.3.6 How to save data on a disc

1. After you have read out the device content into the Buffer or a specified Buffer layer you may
need to save the read data on a PC disc. To save the data:
a) Click the Save button on the local toolbar of the Buffer window or
b) Select the Main menu > File > Save

2. In the pop-up dialog specify the destination file name, format, start and end addresses of the
source (the buffer), and the source sub-level, and click OK.

ChipProg Device Programmers86

© 2008 Phyton, Inc. Microsystems and Development Tools

5.3.7 How to duplicate a device

1. Insert the master device to be copied (duplicated) into the programmer socket.
2. Read it to an active buffer
3. Wait for the message Reading… OK in the Operation Progress box of the Program

Manager tab in the Program Manager window. Make sure the master device content is in a
current buffer.

4. Remove the master device from the socket and replace it with a blank device to be
programmed. If necessary, check to see if it is blank.

5. Program the device. If you need to make more than one copy of the master device repeat
the operations #4 and #5 as may times as necessary.

5.4 Multi- and Gang-programming

This document operates with two programming modes:

· Single-programming mode means programming one device at a time by means of one ChipProg
programmer (excluding the ChipProg-G4 gang programmer).

· Multi-programming or Gang-programming mode means concurrent programming of multiple
devices at a time by:
-- either a multiple single site programmers of one type connected in one programming cluster
driven from one computer;
-- or a special 4-site ChipProg-G4 gang programmer.

The Multi-programming mode differs from the Single-programming mode in the following items:

1. Only the same type of programmers can be used in this mode - either ChipProg-40 or ChipProg
-48 or ChipProg-ISG programmers;

2. Only the same type of the device may be selected for every single programmer connected in one
programming cluster;

3. Only the same set of buffers can be opened for every single programmer connected in one
programming cluster;

4. Only the AutoProgramming function can be executed by the ChipProgUSB in this mode. There is
however one exception - ChipProg-G4 gang programmers can be combined with ChipProg-48
tools;

5. The Program Manager tabs and dialogs are very different.

The Multi-programming mode is intended for small- and middle-volume manufacturing. The
programmers in the Multi-programming mode work concurrently, e.g. you can start programming
on one site, insert a new device into a second socket, start the programming, insert a new device
into a third socket, start the programming, remove the first programmed device, etc.. An ability to
linearly increase the programming system productivity by adding a new ChipProg programmer gives
you flexibility and save money.

In terms of the control there is no difference whether the ChipProgUSB controls a ChipProg-G4 gang
programmer or the program drives a cluster of multiple single ChipProg-40 or ChipProg-48 or
ChipProg-ISG programmers connected to one PC. To launch ChipProgUSB program in the
Multi-programming mode it should be invoked either by using the ChipProgUSB-GANG shortcut in
the ChipProgUSB folder or from the command line with the key /GANG.

The first dialog that appears when you started the ChipProgUSB-GANG shortcut (for the case when
only two programmers forms a two-site programming cluster):

Operating with ChipProg programmers 87

© 2008 Phyton, Inc. Microsystems and Development Tools

Now you should press the Start button on the programmer to which you would like to assign the site
#1. Then the ChipProgUSB will prompt to assign the site #2 to another programmer (in case there are
more than two programmers in the programming cluster), etc. After assigning numbers to the
programmers you will get the Program Manager window that differs from the same window that you
get when you work with one programmer.

5.4.1 The Program Manager Window

The Program Manager window is the major control object on the screen from which an operator
controls the ChipProg . While some windows can be closed in a process of programming this one is
supposed to be always open and visible. The window appearance differs from the same Program
Manager window that you get when you work with one programmer.

The window includes three tabs, opening three groups of settings and status indicators:

The Project Manager tab
The Options tab
The Statistics tab

The Project Manager and Options tabs look differently and enable different settings for the
ChipProg programmers working in the single-programming and multi-programming modes. These
tabs are identical for the ChipProg-G4 gang programmer and for the ChipProg-48, ChipProg-40 and
ChipProg-ISP programmers when they are configured to work in the multi-programming mode. See:

ChipProg Device Programmers88

© 2008 Phyton, Inc. Microsystems and Development Tools

5.4.1.1 The Program Manager tab

Since the only AutoProgramming is available in the multi-programming mode this tab serves for manual
AutoProgramming initiation, displaying the site statisticsand information messages generated by the
ChipProgUSB program.

5.4.1.2 The Options tab

 The tab serves for setting all programming parameters and options for multi-programming mode.

Element of dialog Description

Buffer:

The field Buffer displays the active buffer to which the
programming operations (functions) will be applied. A full list of
open buffers is available here via the drop-down menu.

Addresses Here you can set the addresses for the buffer and the target device
to which the programming functions will be applied.

Device start: The very first address in the target device's physical memory which will be
programmed.

Device end: The very last address in the target device's physical memory which will be
programmed.

Buffer start: The very first address in the buffer memory from which the data will be
written to the target device.

Split Data The group of radio buttons in the Split data field allows to program 8-
bit memory devices to be used in the microprocessor systems with
the 16- and 32-bit address and data buses. To do this the buffer
content should be properly prepared to split one memory file into
several smaller files.

Options:

Operating with ChipProg programmers 89

© 2008 Phyton, Inc. Microsystems and Development Tools

Device-Auto-Detect If this box is checked then AutoProgramming will start immediately
after the ChipProg programmer has detected that the device is in the
programming socket.

Check device ID By default this option is always on and the ChipProg always verifies
the target device identifier given by the device manufacturer. If the
box is unchecked the program will skip the device ID checking.

Insert test If this box is checked the ChipProgUSB will test whether each of the
device leads is reliably squeezed by the programming socket contact.
If some contact is bad a current operation will be blocked.

Reverse bytes order If this box is checked the ChipProgUSB will sweep the byte order in
the 16-bit word while it executes the Read, Program and Verify
operations. This option does not affect the data in the ChipProg
buffers, they remain the same after the file loading.

Blank check before program If this box is checked the ChipProgUSB will always check if the target
device is blank before programming it.

Verify after program If this box is checked the ChipProgUSB will always verify the device
content right after it has been programmed.

Verify after read If this box is checked the ChipProgUSB will always verify the device
content right after it has been read out.

5.4.1.3 The Statistics tab

This tab opens the field displaying the programming session statistical results for each programming
site - Total number of devices that were programmed during the session, what was the yield (Good)
and how many devices have failed (Bad).

ChipProg Device Programmers90

© 2008 Phyton, Inc. Microsystems and Development Tools

Element of dialog Description

Clear statistics This button resets the statistics..

Device Programming
Countdown

Normally the Total counter increments after each Auto
Programming; the, Good and Bad counters also count up. The
ChipProgUSB reverses the counters to decrement their content (to
count down).

Enable countdown If the box is checked the ChipProgUSB will count the number of
the programmed devices down.

Display message when
countdown value
reaches zero

If the box is checked the ChipProgUSB will issue a warning when
the counter Total is zeroed.

Reset counters when
countdown value
reaches zero

If the box is checked the ChipProgUSB will reset all the counters
when the counter Total is zeroed.

Count only successfully
programmed devices

If the box is checked the ChipProgUSB will count only the
successfully programmed (Good). All other statistics will be
ignored.

Set initial countdown
value

Clicking on the button opens the box for entering a new Total
number that then will be decremented after each Auto
Programming.

5.5 In-System Programming

The ChipProg programmers generate all the signals necessary for programming devices installed in
the user's equipment (in-system). In order to program devices in-system the programmers connect
to the target via special adapters. When a device to be programmed is chosen, the ChipProgUSB
software displays a part number of the appropriate cable-adapter in the Device Information
window. The adapters.chm file includes wiring diagrams for all cable-adapters, that allows use of
the adapters made by customers themselves.

General requirements for connecting ChipProg programmers to the target system

Operating with ChipProg programmers 91

© 2008 Phyton, Inc. Microsystems and Development Tools

Connections 1. Connections must be done in accordance to the adapter's wiring
diagram published in the adapters.chm file.

2. The target system should not shunt or overload the logical signals
generated by the programmer.

3. Some IPS algorithms require generating logical signals with the
voltage levels of 10 to 15V exceeding normal voltages used in
electronic systems (3 to 5V). The target system should be tolerant to
applying such "high voltages".

Powering There are two alternative options for powering the targets:

1. The target gets power from the ChipProg. This is possible only if
the target does not consume too much energy. The current supplied
from the programmer may not exceed 80 mA, a capacity of the target
power circuitry should not exceed 50 uF.

2. The target gets power from a built-in or external power supply. In
this case the power output from the ChipProg should not be
connected with the target. The target system should be tolerant to
applying logical signals with the voltage levels exceeding the voltages
on the target.

NOTE! It is strictly prohibited to power the target from both the
programmer and built-in or external power supply simultaneously.

Electrical
characteristics of
the ChipProg signals

Max current load for the logical signals - 5mA.

Max current load for the Vcc line - 80 мА.

Max current load for the Vpp line - 80 мА.

NOTE! Always carefully check connecting your ChipProg programmer to the target. Wrong
connecting may, and probably will cause destruction of the programmer's and/or the target
system's hardware.

Most embedded microcontrollers have different algorithms for the ISP procedure. See the following
topics regarding the ISP for popular microcontrollers:

Specifics of the in-system programming of the Microchip PICmicro

Specifics of the in-system programming of the Atmel AVR microcontrollers

Specifics of the in-system programming of the Atmel 8051 microcontrollers

ChipProg Device Programmers92

© 2008 Phyton, Inc. Microsystems and Development Tools

6 Script Files

The program ChipProgUSB can execute so-called script files in a way similar to how DOS executes
the batch files. Use of script files is to automate usage of the ChipProg programmers. By means of
script files you can automate loading files to the programmer buffers, calculating checksum,
launching device programming, pausing programming in case of an error, manipulating windows
and performing many other operations. It is also possible to display various messages in the
Console window or other special windows generated by the script itself, including displaying
graphical data in special windows; to create user's custom menus, etc. The script language is similar
to C program language; almost all C constructions are supported, except for structures, conjunctives
and pointers. There are also many built-in functions available, such as printf(), sin() and strcpy(). The
extension of script source file is .CMD.

When the ChipProgUSB program starts, it searches for the script with the reserved name START.CMD. So, if
you wish the ChipProgUSB program would automatically perform some operations immediately after you
launch the program, you can create a special script. The ChipProgUSB program begins searching for the
START.CMD in the current directory on the disc, then it searches for this script in the directory where the
ChipProgUSB.exe file resides. If the START.CMD is not located then a default ChipProg shell will open.

The scrips controls and associated dialogs and windows are concentrated under the Script menu.
The major dialog that controls scripts is the Script Files dialog.

See also:

Simple example of a script file

How to write a script file

How to start a script file

How to debug a script file

Description of Script Language

Script Language Built-in Functions

Script Language Built-in Variables

Difference Between the Script Language and the C Language

Alphabetical List of Script Language Built-in Functions and Variables

Script Files 93

© 2008 Phyton, Inc. Microsystems and Development Tools

6.1 The Script Files Dialog

This dialog is used for controlling the Script Files, it allows to start, stop and debug scripts.

In the upper window of this dialog you see the list of loaded script files with the current state of each file.
Any script can be in one of the following states:

State of File Description

Stopped Execution of the script file is temporarily stopped.

Running The script file is being executed.

Waiting The script is waiting for an event. This state is initiated by calling certain wait
functions in the script file text (for example, Wait).

Cancelled The script execution is terminated, but the script file is not yet unloaded from
the memory.

To select a script file, highlight its name in the window. The four buttons on the right of the list control the
highlighted script:

Button Description

Terminate Unloads the selected script file if it can be unloaded. Otherwise, it sets up
the Unload Request flag for the selected script that then goes to the
Canceled state.

Terminate All Unloads all script files visible in the window.

Restart Restarts a highlighted script file.

Debug Switches to the Debugger mode for the highlighted script file. This
command stops execution of the script and opens it in the source window
of the script for debugging. If the script is in the wait state, then execution
will immediately stop after the script returns from the Waiting status.

When you use several script files simultaneously and unload or restart some of them, remember that script
files can share global data and functions. If one script accesses data or the functions belonging to another
one that is already unloaded, then the script interpreter will issue error messages and the active script file
will be also be unloaded (terminated).

The buttons and fields in the lower part of the dialog box control the script files starting:

Element of dialog Description

Script File Name Specifies a name of the script file to be loaded. You can either typed in the
file name with a full path to the box or to take it from the drop-down history
list or browse it from a computer disc.

Browse Opens the Load/Execute Script File dialog for locating and loading script
files into the Script File Name box.

Defines Defines the processor text variables for compilation. For more information,
see below the Processor text variables.

#include-file
Directories

Specifies the directories in which the script file will search for the files
specified in the #include <file_name> directive(s). To specify more than
one directory, separate them by semicolons. The current directory is
scanned as well.

Debug (open Script
Source window)

If this box is unchecked, a script file automatically starts execution upon the
file loading. If the box is checked, then upon loading a script file, the
program immediately opens the window for debugging the script. See also
How to Debug a Script File.

Auto-save Script File
Sources

If this box is checked when you click the Start button ChipProgUSB
automatically saves the source texts of all script files visible in the Script
Source windows.

Start Starts the script file specified in the Script File Name box.

Processor text variables

The content of the Defines text box is equivalent to the #define directive in the C language. For example, if
you type DEBUG in this text box, the result will be as if the #define DEBUG directive is placed in the first
line of the script source text.

You can specify values for variables. For example, DEBUG=3 is equivalent to #define DEBUG 3.

You can list several variables in a line and separate them with semicolons. For example:

DEBUG;Passes=3;Abort=No

Also, see Predefined Symbols at the Script File Compilation.

ChipProg Device Programmers94

© 2008 Phyton, Inc. Microsystems and Development Tools

6.2 How to create and edit script files

A script file is similar to a source program text written in programming language (C, for example), e.g. a
script file can be created and edited either in the Editor window by the ChipProgUSB built-in editor or by
any other editor. You can allocate script files in your work directory or in the directory where the
ChipProgUSB program is installed.

Normally the Editor toolbar that collects all the edit function buttons is hidden. To create a customized
editor toolbar right click on the blank area of the main toolbar, select the Customize line in the drop-down
menu and check the boxes of the editor functions which you would like to make visible.

To open a new script file for editing open the Script menu > Editor window > New. This will open a blank
window below. Right clicking within the window pops up the Editor command menu that includes the
buttons which you can bring up to the local Editor toolbar. Here the toolbar is shown above the window.

Now you can compose your script right in the window.

Note that you should not use the punctuation characters (braces, dash, etc.) in the script file name.

When you complete the file composing click on the Save button on the window local toolbar or on the
Editor toolbar and the program will prompt you to name the script file and to specify its location.

Script Files 95

© 2008 Phyton, Inc. Microsystems and Development Tools

6.2.1 The Editor Window

Commands of this menu refer to the currently active Edit window.

Button Command Description

New Opens the Editor window for a new script file.

Open... Opens the Open file dialog to load a script file for editing. The file
name and path can be either entered or browsed here.

Save Saves the file from the currently active window to a disc.

Save As... Opens the Save file as... dialog.

Print Opens the standard Print dialog for the default printer. You can
print an entire file or a selected text block.

Properties.. The common properties for open files.

6.2.2 Text Edit

Commands of this menu refer to the currently active Edit window.

Button Command Description

Undo Undoes the last text editing action executed in this window. For
example, if the last action deleted a line, then the deleted line will be
restored. The number of steps provided by the Undo function is set in
the of the Configure > Editor Options > General tab.

Copy Copies the marked block to the clipboard. The text format in the
clipboard is standard and the copied block is accessible to other
programs.

Cut Removes the marked block to the clipboard..

Paste Copies the block from the clipboard, starting at the cursor position.

Clipboard
History/
Repository

Opens the Clipboard History/Repository dialog.

Append to
Clipboard

Copies and appends the marked block of text to the block in the
clipboard.

Cut & Append to
Clipboard

Cuts the marked block of text and appends it to the block in the
clipboard.

Fast Copy Copies a block to a specified position in the same window.

Fast Move Moves a block from one position in the window to another position in
this window.

Block Off Unmarks a marked text block.

ChipProg Device Programmers96

© 2008 Phyton, Inc. Microsystems and Development Tools

Search Opens the Search for Text dialog.

Next Search Repeats search with the parameters used in the previous search.

Replace Opens the Replace Text dialog.

Display Multi-file
Search Results

Re-opens the last multi–file search results in the Multi-File Search
Results dialog.

 Display from line
number...

Opens the Display from Line Number dialog for you to specify a
line number. Source text will be displayed from this line.

Set bookmark... Opens the Set Bookmark dialog to set a local bookmark.

Retrieve bookmark

Opens the Retrieve Bookmark dialog to retrieve a local bookmark.

Condensed mode Toggles the Condensed display mode on and off.

Condensed mode
setup

Opens the Condensed Mode Setup dialog.

 Line numbers
on/off

Toggles the availability of the line numbers on and off.

Return to last
editing context

 Activates the most recently edited Source window, and places the
cursor in its final position during the edit.

6.2.2.1 The Search for Text Dialog

This dialog sets complex criteria and parameters for searching text in files. This dialog and the Replace Text
dialog have a number of common parameters, which function in the same way in both dialogs. To specify file
names, you can use one or several wildcards. Also, the names may contain paths. You can search in more
than one file at once by using parameters of the Multi-File Search area.

Element of dialog Description

String to Search for Specifies the text string to search for.

Case Sensitive This box is unchecked by default. Checking this box specifies that the case of
the string is to be matched.

Whole Words Only This box is unchecked by default. If checked, the editor will search only for
whole words: the string will be found only if it is enclosed between punctuation
or separation characters (spaces, tabulation symbols, commas, quotation
marks, etc.).

Regular
Expressions

This box is unchecked by default. Checking of this box specifies that the
search string is a regular expression.

Global Search the entire file for the string. Enabled by default.

Selected Text Search the string in the selected block.

From Cursor Search from the current cursor position.

Entire Scope Search from the beginning or end of the file (depending on the search
direction). Enabled by default.

Script Files 97

© 2008 Phyton, Inc. Microsystems and Development Tools

Perform Multi-File
Search

If this box is checked the editor will search in all project files (see the notes
below). If the box is unchecked, then the search will be performed in the
current Source window only.

Search All Source
Files in Project

If this box is checked the editor will search in all the source files included in the
project.

Include Dependency
Files

If this box is checked the editor will search in all the source files included in the
project and all files on which the source files depend, whether explicitly or
implicitly. For C language, these are the header files (*.h).

Search Wildcard(s) Check this box to search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to
denote Windows-style long names. Example: *.txt;*.c;c:\prog*.h.
This option and the Search All Source Files in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

Search
Subdirectories

If this box is checked the editor will search in subdirectories of all the
directories specified by the Search All Source Files in Project option and by
wildcards.

Starting Path Begin search from the directory specified in this text box. This directory serves
as the common path and is useful when there are several wildcards such as
the following ones:

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*.txt;*.doc) and common path
(c:\prog\text\source).

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched,
not the file on disk.

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-File Search
Results dialog remains open.

6.2.2.2 The Replace Text Dialog

This dialog sets the parameters for the search-and-replace operation. This dialog and the Search for Text
dialog have a number of common parameters, which function in the same way in both dialogs. To specify file
names, you can use one or several wildcards. Also, the names may contain paths. You can search in more
than one file at once by using parameters of the Multi-File Search area.

Element of dialog Description

Text to Search for Specifies the text string to look for (search string).

Replace with Specifies the text string to replace the found one.

Case Sensitive This box is unchecked by default. Checking this box specifies that the case of
the string is to be matched.

Whole Words Only This box is unchecked by default. If checked the editor will search only for
whole words: the string will be found only if it is enclosed between punctuation
or separation characters (spaces, tabulation symbols, commas, quotation
marks, etc.).

Regular
Expressions

This box is unchecked by default. Checking of this box specifies that the
search string is a regular expression.

ChipProg Device Programmers98

© 2008 Phyton, Inc. Microsystems and Development Tools

Prompt at Replace This box is checked by default and if it is checked the editor will always pop up
the Confirm Replace dialog requiring your permission to replace the found
text. If unchecked the editor will automatically replace the searched-and found
text.

Global Search the entire file for the string. Enabled by default.

Selected Text Search the string in the selected block.

From Cursor Search from the current cursor position.

Entire Scope Search from the beginning or end of the file (depending on the search
direction). Enabled by default.

Perform Multi-File
Search and Replace

This box is checked by default and if it is checked the editor will search in all
project files (see the notes below). If the box is unchecked, then the search will
be performed in the current Source window only.

Search All Source
Files in Project

If this box is checked the editor will search in all the source files included in the
project.

Include Dependency
Files

If this box is checked the editor will search in all the source files included in the
project and all files on which the source files depend, whether explicitly or
implicitly. For C language, these are the header files (*.h).

Search Wildcard(s) Check this box to search for one or several wildcards specifying the files to be
searched. Separate wildcards with semicolons. No quotes are required to
denote Windows-style long names. Example: *.txt;*.c;c:\prog*.h.
This option and the Search All Source Files in Project option act
independently of each other: you can search in all files of the project AND in
other files that comply with the specified wildcard(s).

Search
Subdirectories

If this box is checked the editor will search in subdirectories of all the
directories, which are specified by the Search All Source Files in Project
option and by wildcards.

Starting Path Begin search from the directory specified in this text box. This directory serves
as the common path and is useful when there are several wildcards such as
the following ones:

c:\prog\text\source*.txt;c:\prog\text\source*.doc

In this case, make use of wildcards (*.txt;*.doc) and common path
(c:\prog\text\source).

Notes

1. When you search in the file opened in the Source window, then only the window buffer will be searched,
not the file on disk.

2. Multi-file search is performed in all source files of the project. Upon finishing, the Multi-File Search
Results dialog remains open.

6.2.2.3 The Confirm Replace Dialog

This dialog requires your permission to replace a found string. You can turn the prompt on/off by checking/
clearing the Prompt at Replace box in the Replace Text dialog.

Button Function

Yes Replace the found string.

Script Files 99

© 2008 Phyton, Inc. Microsystems and Development Tools

No Cancel this replacement. If the procedure is started with the Change All
button for all occurrences in the search area, then the search-and-replace
process will continue.

Non-Stop From this moment, replace all found strings in this file without prompt.

Cancel Cancel the search-and-replace process.

Skip this File Stop search in this file and switch to the next one.

Replace in All Files Replace all occurrences in all other files without confirmation.

Move cursor to the
Yes/No Buttons

When this box is checked the cursor will be automatically placed on the
Yes button on each inquiry for confirmation.

6.2.2.4 The Multi-File Search Results Dialog

This dialog displays the multi-file search results. To learn about the multi-file search, see the Search for
Text dialog.

The List of Matched Files shows the files where the search string is found. The file name is on the left and
its directory is on the right. The line with green text right under this box displays information about the file
selected in the box. "File in memory" means that the file is opened in the Source window. General
information from FAT means the file is on disk, not loaded. The Preview area shows the source line with the
found text string.

The Sort Files by area includes a radio button with four file sorting options. When the Consider Directory
box is checked, the files are sorted with respect to their directories.

The Edit button opens the selected file in the new Source window and places the cursor on the line with the
found string. The found string is marked with the background color. To check if there are other occurrences
of the sought string in this file, press Ctrl+R or use the Next Search command of the Edit menu.

The Close button closes the dialog but the results are not lost. To reopen the dialog use the Display Multi-
file Search Results button. You can also use the same command of the Edit menu or press Shift+F5. The
files in the List of Matched Files box, which are opened in the Source window, will be marked with asterisks
on the left.

6.2.2.5 Search for Regular Expressions

The text editor supports "regular expressions," which can be used to search for special cases of text strings.
Regular expressions contain the control characters in the search argument string:

? Means any one character in this place. Example: if you specify ?ell as the search string,
then "bell," "tell," "cell," etc. will be found.

% Means the beginning of line. The characters following '%' must begin from column 1.
Example: %Counter - find the word "Counter," which begins at the first column.

$ The end of line. The characters preceding the '$' should be at the last positions of the
line. Example: Counter$ - find the word "Counter" at the line end.

@ Match the next character literally; '@' lets you specify the control characters as usual
letters. Example: @? - search for the question mark character.

\xNN The hexadecimal value of the character. Example: \xA7 - find the character with the
hexadecimal code of A7.

+ Indefinite number of repetitions of the previous character. For example, if you specify 1T
+2, then the editor will find the lines containing "1" followed by "2", which are separated
with any number of repetitions of the letter T.

[c1-c2] Match any character in the interval from c1 to c2. Example: [A-Z] means any letter from A
to Z.

[~c1-c2] Match any character whose value is outside the interval from c1 to c2. Example: [~A-Z]
means any character except for the uppercase letters.

ChipProg Device Programmers100

© 2008 Phyton, Inc. Microsystems and Development Tools

text1|text2 The "|" character is the logical "OR" and the editor will look for either text1 or text2.
Example: LPT|COM|CON means search for "LPT" or "COM" or "CON."

6.2.2.6 The Set/Retrieve Bookmark Dialogs

Bookmarks help you to return to a marked cursor position in a source file.

You can set and retrieve up to 10 local bookmarks. Every local bookmark has an individual numbered button
assigned to it.

To open the Set Bookmark dialog, press Alt+[. To open the Retrieve Bookmark dialog, press Alt+]. To set/
retrieve a bookmark, press its numbered button. The number of the bookmarked line, the bookmark position
in the line (in brackets) and the text of the line are shown at the right of the button.

Local bookmarks are stored in the configuration file and you can work with them in the next session.

6.2.2.7 Condensed Mode

In the Condensed mode, only lines that satisfy a specified criterion are displayed in the window. There are
two available criteria:

· the line must contain a given sub-string;
· the first non-space character in a line must be at a specified position (column).

Examples: (a) with the sub-string criterion and the sub-string set to "counter," only the lines containing the
word "counter" will be displayed; (b) with the second criterion and the position set to four, only the lines in
which text begins at column 4 will be displayed.

The Condensed mode brings the lines having some common feature to "one place." If you attentively follow
a rule to begin the declaration of data at position 2, procedures at position 3, and interrupt handlers at
position 4, then the Condensed mode will help you to find a necessary declaration. If you comment certain
lines with the same or similar comments and use the Condensed mode with sub-string, you will be able to
benefit from your composing style. In the Condensed mode, you can move the cursor just as in the normal
mode.

How to control

The criterion for display is set in the Main menu > Script > Text Edit > Condensed Mode Setup dialog. To
toggle the Condensed mode on/off, use the Edit menu command, the Condensed Mode command of the
local menu or the F12 hotkey. To exit the Condensed mode, press Esc. When you exit, the cursor returns to
the position at which it was before the mode was turned on. To exit the mode and remain in the line from
which you moved the cursor while in the mode, press Enter or begin editing the line.

6.2.2.8 The Condensed Mode Setup Dialog

This dialog sets up the parameters for the Condensed mode of the Source window.

The Display Lines of Text area has radio buttons for switching between two alternative criteria for
condensing text in the Source window: Containing String and Where First Non-blank Column Is:

1. If you check the Containing String radio button the Source window will display only the lines with text that
match the sub-string specified in the text box at the right. Additionally, you can specify that the case should
be matched the case, that whole words only should be used, and that the sub-string is a regular expression.

2. If you check the Where First Non-blank Column Is radio button, the Source window will display the lines
where text begins from the position specified in the Column box. Then you should select one of four options
by checking an appropriate radio button:

· Equal to - the first non-space character should be exactly in the specified column. For example, if you
specify position number 2, the window will display only the lines whose text begins in column 2.

· Not Equal to - the first non-space character should be in any column except the position specified here.
For example, if you specify position number 2, the window will not display all the lines beginning in this
column. All other lines will be displayed.

· Less than - display only the lines in which text begins at a position less than the specified one.

Script Files 101

© 2008 Phyton, Inc. Microsystems and Development Tools

· Greater than - display only the lines in which text begins at a position greater than the specified one.

When you have completed setup click OK to switch the Source window to the Condensed mode.

6.2.2.9 Automatic Word Completion

It is normal for words (labels, names of variables) to be repeated within a limited part of a file. In such
cases, the Source window helps you finish typing the whole word.

If the cursor is at the end of line that is being composed, then upon typing a letter, the editor scans the text
above and below the current line. If a word beginning with the letters that you have just typed is found in
these lines, then the editor will "complete" this word for you by writing the remaining part of the word from
the current cursor position. If this word suits you, press Alt+Right (Alt+<right arrow>) and the editor will
append the remaining part of the word to the text as if you have typed it yourself. If the word doesn’t suit
you, just continue typing and the editor will accept whatever you type. At any point during the typing, you
may press Alt+Right to accept the editor’s completion suggestion.

You can press Alt+Right at any time and not only when the editor offers you to complete a word. In this
case, the editor will open a list of words that begin with the typed letters. If the list does not include an
applicable word, just ignore the prompt. The right pane of the Source window, if it is open, also displays the
word completion list.

How to control

To disable automatic word completion, uncheck the Automatic Word Completion box in the Main menu
> Configure>Editor Options> General tab. When the box is checked, a number placed in the Scan
Range box defines the number of lines for the editor to scan. The default is 24 lines below and 24 lines
above the current line. When this parameter is greater than the total number of lines in the file (for
example, 65535), then program composing will become slower because the whole file will be scanned.

6.2.2.10 Syntax Highlighting

When the Source window displays the source text, it marks different C language constructions with
different colors. This feature improves readability. The following constructions are highlighted separately:

· Punctuation and special characters: () [] { } . , : ; and so on.
· Comments that begin with // are highlighted. Comments enclosed in the /* */ character pairs are

highlighted, if the opening and closing pairs are placed in the same line.
· Strings enclosed in double or single quotation marks.
· Keywords of the C language (for, while, and so on).
· Type names of the C language (char, float, and so on).
· Library function names of the C language (printf, strcpy, and so on).

How to control

You can disable syntax highlighting through the Main menu > Configure>Editor Options> General
 tab>Syntax Highlighting flag In addition, you can change the color for each construction. To do the latter,
use any of the following items: Main menu > Configure> Environment > Colors tab.

6.2.2.11 The Display from Line Number Dialog

Use this dialog to display the source file in the active Source window starting with a specified line. Enter the
line number or select any previous number from the History list. The number of the first line is 1.

ChipProg Device Programmers102

© 2008 Phyton, Inc. Microsystems and Development Tools

6.2.2.12 The Quick Watch Function

The Quick Watch function works as follows: if you roll the mouse pointer over a variable name in the Source
 window or the Script Source window, a small box containing the value of the variable will be opened. This
box disappears upon moving the mouse off the object.

Script Files 103

© 2008 Phyton, Inc. Microsystems and Development Tools

6.2.2.13 Block Operations

Block operations apply an editing action to more than one character at once. The Source window supports
persistent blocks and performs a full range of operations with standard (stream), vertical (column) and line
blocks of text.

Non-persistent blocks In this mode, once a block is marked, you have to immediately carry out an
operation with it (delete, copy, etc.), because any movement of cursor takes the marking off the block. If a
block is marked, then any entered text will replace the block with the typed text.

Persistent blocks In this mode, the block remains marked until the marking is explicitly removed (hot key
Shift+F3) or the block is deleted (Ctrl+X). The Paste operation for persistent blocks has specifics. Two
additional block operations are available for persistent blocks: fast copy and fast move. These operations
do not use the clipboard and require fewer manipulations of the keyboard.

To enable the persistent block mode check the namesake box on the Main menu > Configure>Editor
Options> General tab.

Standard blocks The standard (stream) block contains a "text stream" that begins from the initial line and
column of the block and ends at the final line and column.

The Standard blocks is enabled by default.

Line blocks The line block contains whole lines of text. To mark a line block, put the cursor anywhere in
the first line and press Alt+Z; then put the cursor anywhere in the last line of the block and press Alt+Z
once more (the latter is not necessary if the block is to be immediately deleted or copied to the clipboard).

Line blocks are always available.

Vertical blocks The vertical block contains a rectangular text fragment. Characters within the block, which
goes beyond the end of the line, are considered to be spaces. Vertical blocks are convenient in cases like
the following example of source text:

char Timer0 far ;
char Timer1 far ;
char Int0 far ;
char Int1 far ;

Assume the word "far" is to be moved to the place right after the word "char" in each line. The stream
blocks are of little help here. However the task can be easily done with one vertical block. Mark the
persistent vertical block containing the word "far" in each line, place the cursor on the first letter of word
"Timer0" and press Shift+F2 (fast move the block):

Checking/Clearing the Vertical Blocks box toggles between the vertical block and the stream block modes
in the the Main menu > Configure>Editor Options> General tab. The standard blocks are enabled by
default; i.e. the Vertical Blocks box in the Editor Options dialog is unchecked by default. The line blocks
are always accessible, irrespective of the status of the Vertical Blocks box.

To mark a block, either move the mouse while pressing its left button or use the arrow keys of the
keyboard while pressing the Shift key. To unmark the block, press Shift+F3.

Copying / moving blocks

A marked block can be copied or moved within the same Source window in two ways: directly (fast
copying, fast moving) and through the clipboard (Copy/Cut-n-Paste). Copying and moving blocks between
the Source windows, or to another application should always be made through the clipboard.

Note. The result of copying the stream or vertical non-persistent block depends on the INSERT mode. If
the mode is enabled, then the block is inserted into the text, starting at the cursor position; otherwise the
copied block overwrites the text on an area of equivalent size.

Fast copying / moving

Fast copying (moving) the blocks in the same window directly (without the clipboard) is convenient
because it requires pressing of keys only once per operation. Mark a persistent block, then place the
cursor at the destination position and press Shift+F1 to copy, or Shift+F2 to move.

ChipProg Device Programmers104

© 2008 Phyton, Inc. Microsystems and Development Tools

6.3 How to start and debug script files

Starting scripts

Scripts can be started and restarted in several ways. The easiest one uses the commands of the Script
Files dialog:

· to start a new script enter the file name into Start new script file box and click the Start button in the
bottom part of the dialog box;

· to restart a stopped script highlight its name in the dialog window that displays all the loaded scripts and
click the Restart button.

A script can be also started by means of the StartCommandFile() function executed by another running
script.

Debugging scripts

A script can be started for an immediate execution (read above) and can be launched in the Debug mode that
usually is necessary while you master the script and need to check if it properly works and make necessary
corrections in it. To start the script debugging highlight its name in the Script Files dialog window and click
the Debug button - the program opens the window with the script file's editable text. The window is split in two
panes: the left pane displays the script text, the right one is the AutoWatches pane. If you check the Debug
box then every time when you start a script it will automatically switch to the Debug mode, stop the script
execution and open the window with the script file.

Syntax constructions and the lines, which correspond to the current PC value (blue strip) and the
breakpoints (red strips), are highlighted in the script file text (for more information, see Syntax Highlighting).

Local menu and toolbar

The local menu window contains the following commands, most of which are duplicated by the
corresponding buttons on the window toolbar:

Command Window Toolbar Description

Step Step Executes one operator of the script.

Run Run Starts continuous execution of the script in the
window. Then the script execution can be broken
either by hitting a set breakpoint or by the command
Stop.

Run to Cursor Executes the script up to the line where the caret is
positioned (the corresponding address).
Alternatively, you can double-click the line to carry
out this command.

Stop Stops the running script.

Origin Origin Displays the source text from the line whose address
corresponds to the script file Program Counter. This
operation is not available when source text lines do
not exist for the program addresses.

New PC New PC Sets the script file’s Program Counter value to the
address corresponding to the line where the caret is
positioned.

Toggle
Breakpoint

Break Sets up or clears the breakpoint at the address
corresponding to the line where the caret is
positioned. When you execute the Run or Run to
cursor command the program execution will be
stopped at the breakpoint.

Add to Watches
Window

+Watch Opens the Watches window (if not yet opened) and
places the name at the caret position into it.

Restart Restart Restarts the highlighted script.

Note. To get help on a function or variable, point to the function or variable with the cursor and click. For
more information, see How to Debug a Script File and Script Files.

For customizing the ChipProg user interface and debugging purposes scripts themselves can open two
types of additional windows: the User window and the I/O Stream window.

Script Files 105

© 2008 Phyton, Inc. Microsystems and Development Tools

6.3.1 The AutoWatches Pane

The ChipProgUSB program displays a visible portion of the script in the Script window. The names of
variables, called AutoWatches, which belong to the visible script lines, are listed together with their current
values in the right pane of the window. When you scroll through the Script window the contents of the
AutoWatches pane automatically refreshes.

The AutoWatches can be presented in the pane in the binary, hexadecimal, decimal or ASCII formats. To
set the format you need to click the Setup button on the pane local toolbar or right click on the pane space
to open the local menu.

6.3.2 The Watches Window

While the AutoWatches pane of the Script window displays values of the script variables visible in the
current window scope you may want to monitor changing other explicitly specified script variables and
expressions. To do so the ChipProgUSB allows opening the Watches windows. For each variable, the
window displays its name, value, type and address, if any.

A newly opened Watches window has one Main tab. You can add custom tabs (with the Display Options
command of the local menu) or rename any existing tabs. The tabs operate independently of each other;
each tab is functionally equivalent to a separate Watches window. However, if needed, you can open
several Watches windows.

Each of the above windows has the +Watch button on its toolbar. Clicking this button opens a dialog for
adding a selected object to the Watches window.

Grids in the Watches window

For better readability the Watches window can be divided in cells by vertical and horizontal grid lines. Enable
the grids to be visible within the Watches window by checking the corresponding boxes in the Configure
menu > Environment > Fonts tab.

Local menu

The window local menu contains the following commands, most of which are duplicated by corresponding
buttons on the window toolbar.

Command Description

Add Watch Adds one or more objects to the window. Opens the Add Watch dialog to
choose an object by name. Also, you can enter an expression as a name.

Delete Watch Deletes a selected object from the Watches window.

Delete All Watches Deletes all watches from the window.

Modify Opens the Modify dialog to set a new value for a selected variable.
Alternatively, just enter the new value.

Move Watch Up Moves a selected watch up the list.

Move Watch Down Moves a selected watch down the list.

ChipProg Device Programmers106

© 2008 Phyton, Inc. Microsystems and Development Tools

Display Options Opens the Display Options dialog to change the display settings for a
selected object and also to add/delete tabs to/from the window.

6.3.2.1 The Display Watches Options Dialog

Use this dialog to set the display options for the selected variable or expression in the Watches window.

Element of dialog Description

Watch Expression Contains a selected expression. The drop–down list contains the
previously used expressions.

Display Format Specifies the format for displaying a selected expression (binary,
hexadecimal, decimal or ASCII).

Pop-up Description
Contains check boxes that let you choose formats for displaying pop-up
SFR descriptions.

Display Bit Layout
If this box is checked the SFR bits will be displayed in the pop-up layout
descriptions.

Display Bit Descriptions
Checking this box enables displaying the pop-up descriptions for the
SFR bits, if any.

Auto-size Name Field When this box is checked and when the vertical grid is visible (see note
below), the window automatically adjusts the Name column width to fit
the longest record in the column.

Tabs Lists all the tabs present in the window.

Add Tab Opens the Add New Tab to Watches Window dialog for entering a
new tab’s name. The window adds this new tab upon pressing OK.

Remove Tab Removes the tab selected in the Tabs list.

Edit Tab Name Opens the Edit Watch Window Tab Name dialog for editing the tab
name.

Global Debug/ Display
Options

Opens the Debug Options dialog.

Note. To make grids visible in the Watches window open the Configure menu, the Environment dialog,
the Fonts tab and check corresponding boxes in the Grid field.

6.3.2.2 The Add Watch Dialog

Use this dialog box to add symbol names (for example, a variable name or an expression) to the Watches
window. The dialog contains a list of the symbol names defined in or known to the program.

Element of dialog Description

Script Files 107

© 2008 Phyton, Inc. Microsystems and Development Tools

Name or expression to
watch:

Enter into this box the symbol name or expression to be added. You can
specify several names and expressions either manually (separated with
semicolons) or by selecting in the list with the Ctrl key pressed.

History The list of previous names and expressions.

6.3.3 The User Window

The User window is a window that can be created by means of the built-in OpenUserWindow function
executed from the script itself. The User windows enable:

· drawing graphical objects (indicators, LEDs, buttons, arrows, etc. by means of the built-in graphical
output functions;

· displaying texts in the window;
· responding to the events displaying in the User windows (see WaitWindowEvent).

With this capability, you can organize window operations in the interactive mode. For more information,
see Script Files.

All functions working with windows (including the User window) obtain the window identifier (handle) as a
parameter. Therefore, you can have several windows of this type opened at the same time.

The User windows do not have a local menu. They only have toolbars with 16 buttons (0...F), and each
button can be programmed to perform a certain function. Pressing a button generates the
WE_TOOLBARBUTTON event.

6.3.4 The I/O Stream Window

The I/O Stream window is a window that can be created by means of the built-in OpenUserWindow
function executed from the script itself. Script files use windows of this type to display I/O streams in the
form of text. The most usual examples of I/O streams are displaying the characters inputted from the PC
keyboard and text messages outputting by the scripts. Also, you can reassign I/O streams to files and
input data from files.

The functions, which operate with windows (including the I/O Stream window), receive the window
identifier (handle) as a parameter. Therefore, several windows of this type can be open at the same time.

When the text display function sends text to this window, the window displays the text from the current
cursor position. To begin the next line, this function outputs '\n' (the line feed character).

The window features two text display modes: with the automatic line advance (Wrap) and without it. In the
automatic line feed mode, every text line that does not fit in the window is wrapped to the next line. In the
other mode, if the line does not fit in the window, its end will lie beyond the window border and will be
invisible. The Wrap button in the toolbar toggles the window between these modes. The Clear button
clears the window contents.

Windows of this type do not have a local menu.

ChipProg Device Programmers108

© 2008 Phyton, Inc. Microsystems and Development Tools

7 References

7.1 Command line keys

The ChipProgUSB can be launched from the command line with addition of optional keys (parameters) that
vary the program default configuration and/or automatically executes some function.

The command line mnemonic is: UPROGNT2.EXE /Key1 /Key2 ... , where each '/Key' parameter specifies
a certain function as described in the table below. (more than one key can follow the executable file; each
'/KeyX' parameter should be separated by a space symbol from each other and from the executable file).
The '/KeyX' parameters below are case-insensitive. See the command line example below.

Keys Description

/S<file> Opens the program with a pre-loaded Session configuration file, the name of
which is specified in the <> brackets. This Session configuration file is loaded
instead of the default one. The default session file UPROG.ses resides in the
ChipProgUSB folder.

/D<file> Opens the program with a pre-loaded Desktop configuration file, the name of
which is specified in the <> brackets. This Desktop configuration file is loaded
instead of the default one. The default session file UPROG.dsk resides in the
ChipProgUSB folder.

/O<file> Opens the program with a pre-loaded Option configuration file, the name of
which is specified in the <> brackets. This Option configuration file is loaded
instead of the default one. The default session file UPROG.opt resides in the
ChipProgUSB folder.

/C"<device_name>" Opens the program with a pre-selected device type, which is specified in the <>
brackets. If the device_name does not exist in the ChipProg database the
program will immediately open the Select device dialog.

/L<file> Opens the program with a pre-loaded file, the name of which is specified in the
<> brackets. A full path to the file should be specified. If the specified file cannot
be found the program will immediately opens the Load File dialog.

/F<format> This key works together with the '/L<file>' and specifies the format of the file to
be loaded.

/A Opens the program that is configured and ready for AutoProgramming. The
list of the functions preset for AutoProgramming is defined by the loaded
Configuration Files.

/I This key is used when some external application controls the ChipProg
programmer and the ChipProgUSB window should be invisible. The command
line with the '/I' key starts the ChipProgUSB program but it works in the
background.

/I1 This key is similar to the '/I' key with the following addition - the program does
not write error messages to the console buffer.

/I2 This key is similar to the '/I1' key with the following addition - the program copies
error text to the system clipboard.

/ES<script_file> The ChipProgUSB executes a script file, the name of which is specified in the
<> brackets.

/GANG Starts the ChipProgUSB program in the multi-programming mode.

/M
 The Demo mode.

Note. The file names above must follow the parameter without a blank space.

Here is an example of the command line that controls the ChipProg:

"C:\Program Files\Chipprogusb\4_57_00\uprognt2.exe" /Lc:\work\program.hex /FH /A /I2.

The command above starts the C:\Program Files\Chipprogusb\4_57_00\uprognt2.exe program in the
hidden mode, loads the file c:\work\program.h in the Intel HEX format, starts AutoProgramming,
completes the application that controls the programmer and if there is an error then copies it to the
computer clipboard.

References 109

© 2008 Phyton, Inc. Microsystems and Development Tools

7.2 Errors Messages

Enter topic text here.

7.2.1 Error Load/ Save File

5005 "Error reading file"

5004 "CRC mismatch, loading terminated"

5003 "Invalid .HEX file format"

5043 "Address out of range"

5078 "End address should be greater than start address"

5151 "Invalid file format"

5007 "Error writing file"

6899 "Cannot load file '%s': buffer #%u does not exist"

6900 "Cannot load file '%s': sub-level #%u does not exist"

7019 "Unable to open project file: '%s'.\n\nAfter start, the programmer attempts to load the most recent project.
This error means that the project file does not exist on disk."

7.2.2 Error Addresses

5189 "Device start address (0x%LX) is too large.\nMax. address is 0x%LX."

5190 "Device end address (0x%LX) is too large.\nMax. address is 0x%LX."

5191 "Buffer start address is too large"

4024 "Address %s is out of range (%s...%s)"

4106 "File format does not allow addresses larger than 0xFFFFFFFF"

4019 "Address in device: 0x%08X, Address in buffer: 0x%08X\n"

6626 "Buffer start address must be even"

6627 "Device start address must be even"

6628 "Buffer end address must be odd"

8002 "Buffer named '%s' already exists. Please choose another name for the buffer."

7.2.3 Error sizes

6372 "Buffer size is too small for selected split data option"

6495 "Requested buffer size (%lu) is too large"

6441 "Size of file is greater than buffer size:\nAddr = %08lX, length = %u"

6431 "Source block does not fit into destination sub-level"

6859 "File size is %u bytes that is less than header size (%u bytes), loading terminated. Probably, you have

ChipProg Device Programmers110

© 2008 Phyton, Inc. Microsystems and Development Tools

specified an invalid file format."

4107 "Cannot allocate %Lu MBytes for the buffer, maximal buffer size is %Lu MBytes"

5192 "Invalid number: '%s'"

.

7.2.4 Error command-line option

5329 "/%s command-line option: Device name required"

5330 "/%s command-line option: Missing file name"

5331 "/%s command-line option: Missing file format tag"

5332 "/%s command-line option: Invalid file format tag"

5333 "Command line: unable to determine the file format"

5334 "/%s command-line option: Invalid address value"

4104 "Command-line option /I ignored because /A option is not specified"

7.2.5 Error Programming option

6409 "Invalid programming function or menu name:\n'%s'"

6410 "Invalid programming option name '%s'"

6902 "Invalid '%s' programming option value string: '%s'"

6411 "Programming option '%s' cannot be changed"

6412 "Programming option string is too long.\nMax. length is %u."

6854 "Programming option '%s' has type of '%s'. Use '%s()' script function to get the value of this option."

5188 "Value %.2f is out of range of %.2f...%.2f for programming option '%s'"

6561 "Value %ld is out of range of %ld...%ld for programming option '%s'"

4001 "Not all of the saved auto-programming functions were restored. Check the auto-programming functions
list."

7.2.6 Error DLL

6499 "Cannot find bit resource with id 0x%X in DLL:\n'%s'"

6500 "Error handling bit resource with id 0x%X in DLL:\n'%s'"

6502 "Unable to find device '%s' in DLL:\n'%s'"

7.2.7 Error USB

4015 "USB device driver error 0x%04X in '%s'.\n\nCannot recover from this error, exiting.\n\nPlease check if the
programmer power is on. If yes, disconnect the USB cable from computer and connect it again, then restart the
%s shell."

4016 "All sites reported USB device driver error.\n\nCannot recover from this error, exiting.\n\nPlease check if

References 111

© 2008 Phyton, Inc. Microsystems and Development Tools

the programmer(s) power is on. If yes, disconnect the USB cable from computer and connect it again, then
restart the %s shell."

4017 "The following site(s):\n\n%s\n\nreported USB device driver error.\n\nThese site(s) will be removed from
the gang programming process.\n\nPlease check if the programmer(s) power is on. If yes, disconnect the USB
cable from computer and connect it again, then restart the %s shell."

7.2.8 Error programmer hardware

6546 "Source area does not fit into destination address space"

4005 "Attempt to read memory beyond buffer end: Addr = %s, len = %u bytes"

6988 "Unable to establish connection with programmer hardware. Please check if:\n\n"

4006 "Attached programmers have duplicate serial number '%s'"

4010 "This programmer with serial number '%s' has been already assigned the site number = %u"

4011 "This gang programmer with serial number '%s' has been already assigned the site numbers = %u..%u"

4013 "The programmers attached are of different types and cannot be used for gang mode.\n\nExiting."

4014 "ExecFunction() does not work in Gang mode"

4020 "%s reported hardware error 0x%X, error group 0x%X. If problem persists, please contact Phyton."

4000 "The attached programmer with id = %u is not supported"

4102 "Device programming countdown value is zero%s"

7.2.9 Error internal

6527 "Internal error:\nCORE() for %s %s returned NULL.\nPlease contact your %s distributor."

4025 "Internal Error: Unable to allocate %u bytes for the buffer. Please contact Phyton."

7.2.10 Error confiquration

6503 "No programmer configuration files found (prog.ini)"

5325 "The device type '%s %s' stored in configuration "
 "or choosen from script file function 'SetDevice()' is not supported by %s.\n"
 "The device '%s %s' will be selected.\n"
 "Use 'Configure / Select device' to choose the device "
 "you need to operate on."

4002 "The '%s' configuration option has been set to an illegal state due to the data read from file. Setting this
option to its default state ('%s')."

7.2.11 Error device

5326 "Device selection error"

4018 "Device '%s' is not supported by the %s. Please choose another device."

ChipProg Device Programmers112

© 2008 Phyton, Inc. Microsystems and Development Tools

7.2.12 Error check box

6852 "Error in check box option specification string: '=' expected"

6853 "Cannot find check box option string '%s'"

7.2.13 Error mix

5195 " Number of repetitions cannot be zero"

5206 "The 'View only' option is on; editing disabled. Click the 'View' button on toolbar to enable editing."

6501 "No power-on tests defined in:\n'%s'"

6903 "'%s' is a sub-menu name, not a function name"

6401 "No more occurences"

6387 "Invalid fill string"

5172 "Checksum = %08lX"

5311 "No more mismatches"

7.2.14 Warning

5338 "Warning: JEDEC file has no file CRC"

5339 "Warning: JEDEC file has invalid CRC"

6933 "Warning: no 'file end' record in file"

6845 "Attention! The %s %s device must be inserted into the programmer's socket shifted by %d row(s) relative
to the standard position as shown in the Device Information window."

6846 "Attention! Insert device into socket shifted by %d row(s) as shown on the picture."

7.3 Expressions

Expressions in the program are the mathematical constructions for calculating results with the use of one or
more operands. It supports various operations on expressions. The following operands are used:

· numbers
· example of expressions

When a number is required, you may use an expression; <%CM%> will accept the value of the expression.
For example, when using the Modify command in the Buffer window, you can enter the new value in the
form of a number or arithmetic expression.

Interpreting the expression result

The expression result is interpreted in accordance with the context in which it is used.

In the dialog box, when an address is required, the program tries to interpret the expression’s value as the
address. If you enter a variable name, the result of the expression will be the variable’s address but not the
value of the variable.

If the dialog expects a number to be entered, the expression’s value will be interpreted as a number (for
example, the Modify Memory dialog box of the Buffer Dump window). If you enter a variable name there,
then the result will be the value of the variable, but not its address.

Nonetheless, you can follow the default rules:

References 113

© 2008 Phyton, Inc. Microsystems and Development Tools

If you need to use the variable’s value, where an address is expected, then you can write something like var
+ 0. In this case, the variable’s value will be used in the expression.

If you need to use the variable address, apply the & (address) operation, that is, &var.

ChipProg Device Programmers114

© 2008 Phyton, Inc. Microsystems and Development Tools

7.3.1 Operations with Expressions

The program supports all arithmetic and logical operations valid for the C language, as well as pointer and
address operations:

Designation Description

() Brackets (higher priority)

[] Array component selector

. Structure component or union selector

-> Selection of a structure component or a union addressed with a pointer

!

Logical negation

~ Bitwise inversion

- Bitwise sign change

& Returns address

* Access by address

(type) Explicit type conversion

(sizeof) (returns size of operand, in bytes)

*

Multiplication

/ Division

% Modulus operator (produces the remainder of an integer division)

+ Addition

- Subtraction

<<

Left shift

>> Right shift

<

Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

!= Not equal to

&

Bitwise AND

^ Bitwise XOR

| Bitwise OR

&& Logical AND

|| Logical OR

= Assignment

The types of operands are converted in accordance with the ANSI standard.

The results of logical operations are 0 (false) or 1 (true).

Allowed type conversions:
· Operands can be converted to simple types (char, int, ... float).
· Pointers can be converted to simple types (char *, int *, ... float *) and to structures or unions.
· The word "struct" is not necessarily (MyStruct *).

References 115

© 2008 Phyton, Inc. Microsystems and Development Tools

7.3.2 Numbers

By default, numbers are treated as decimals. Integers should fit into 32 bits; floating point numbers should fit
into the single precision format (32 bits).

The following formats are supported:

1) Decimal integer.

Example: 126889

2) Decimal floating point.

Examples: 365.678; 2.12e-9

3) Hexadecimal.

 <%CM%> understands numbers in C format and assembly format.

Examples: 0xF6D7; 0F6D7H; 0xFFFF1111

4) Binary.

 Binary numbers must end with 'B'.

Examples: 011101B; 111111111111111000011B

5) Symbol (ASCII).

Examples: 'a'; 'ab'; '$B%8'.'.

7.3.3 Examples of Expressions

Examples of expresions

 #test#i + #test#j << 2
 (unsigned char)#test#i + 2
 sizeof(##array) > 200

main

i + j << 2 / :CW0x1200

(unsigned char)i + 2

sizeof(array) > 200

(a == b && a <= 4) || a > '3'

sptr -> Member1 -> a[i]

*p

*((char *)ptr)

ChipProg Device Programmers116

© 2008 Phyton, Inc. Microsystems and Development Tools

7.4 Script Language

The program ChipProgUSB can execute so-called script files in a way similar to how DOS executes the batch
files.

The main objective of script files is to automate usage of the emulator. Using script files makes it possible
to load programs, set up breakpoints, start program execution, manipulate windows and perform any
actions available to you in automatic (batch) mode. It is also possible to display various messages in the
Console window or other special windows, to create user's custom menus, etc. There is the option of
displaying any graphical data in special windows.

The script language is similar to C: almost all C constructions are supported, except for structures,
conjunctives and pointers. However, there are some differences. There are also many built-in functions
available, such as printf(), sin() and strcpy().

The extension of script source file is .CMD.

Simple example of a script file

How to write a script file

How to start a script file

How to debug a script file

Description of Script Language

Script Language Built-in Functions

Script Language Built-in Variables

Difference Between the Script Language and the C Language

Alphabetical List of Script Language Built-in Functions and Variables

7.4.1 Simple example

This example shows how to load a file and automatically program it and display the result.

 #include <system.h>
 #include <mprog.h>

 void main()
 {

 LoadProgram("test.hex", F_HEX, SubLevel(0, 0)); // load file "test.hex" that is an Intel
HEX file
 // to buffer 0, sub-level 0
 InsertTest = TRUE; // set testing of chip presence to
"on"
 if (ExecFunction("Auto Programming") == EF_OK) // perform an automatic programming
 {
 if (ExecFunction("Verify", SubLevel(0, 0), 10) != EF_OK) // verify 10 times
 {
 printf("Verify failed: %s", LastErrorMessage); // display error message if verify failed
 return; // terminate script
 }
 printf("Verify ok."); // display Ok result
 }
 else
 printf("Programming failed: %s", LastErrorMessage); // display error message
 }

References 117

© 2008 Phyton, Inc. Microsystems and Development Tools

7.4.2 Description

The language used for writing the script files is similar to the C language. If you are familiar with the C
language, you can skip this chapter and switch to reading about the differences between the script
language and the C language.

This manual contains just a few examples of programming in the script language. To find more examples,
refer to books on the C language.

General Syntax of Script Language
Basic Data Types
Data byte order
Operations and Expressions
Operators
Functions
Descriptions
Directives of the Script File Language Preprocessor
Predefined Symbols in the Script File Compilation

7.4.3 Built-in Functions

The script file system provides you with a large set of built-in functions intended for work with lines, files, for
mathematical calculations, and access to the processor resources. The system.h file contains descriptions
of these built-in functions. You should include the system.h file in the script file source text with the
#include directive:

#include <system.h>

You can use these built-in functions in the same way you use any function that you have defined.

Buffer access functions

Device programming control functions
Mathematical Functions
String Operation Functions
Character Operation Functions
Functions for File and Directory Operation
Stream File Functions
Formatted Input-Output Functions
Script File Manipulation Functions
Text Editor Functions
Control Functions
Windows Operation Functions and Other System Functions
Graphical Output Functions
I/O Stream Window Operation Functions

Event Wait Functions
Other Various Functions

Note. To get help on a function or variable, while editing the script source with the <%CM%> built-in editor,
point that function/variable name with the cursor and hit Alt+F1.

ChipProg Device Programmers118

© 2008 Phyton, Inc. Microsystems and Development Tools

7.4.4 Built-in Variables

 You can access script language built-in variables in the same way as regular global variables. However,
some built-in variables are accessible only for reading, and in case of attempt to write to such variable.

The built-in variables are declared in the system.h header file.

Programming variables:
InsertTest
ReverseBytesOrder
BlankCheck
VerifyAfterProgram
VerifyAfterRead
ChipStartAddr
ChipEndAddr
BufferStartAddr
LastErrorMessage
DialogOnError

Text editor built-in variables:
InsertMode
CaseSensitive
WholeWords
RegularExpressions
BlockCol1
BlockCol2
BlockLine1
BlockLine2
BlockStatus
CurLine
CurCol
LastFoundString

Miscellaneous variables:
WorkFieldWidth
WorkFieldHeight
ApplName[]
DesktopName[]
SystemDir[]
errno
_fmode
MainWindowHandle
NumWindows
WindowHandles[]
SelectedString[]
LastMessageInt
LastMessageLong

References 119

© 2008 Phyton, Inc. Microsystems and Development Tools

7.4.5 Difference between the Script and the C Languages

ChipProg Device Programmers120

© 2008 Phyton, Inc. Microsystems and Development Tools

The script files are written in a C-type language and you should not expect it to meet standards. Many
features are not supported because they are not necessary and complication of the language can cause
compiler errors (the script file language compiler is not a simple thing).

• Pointers are not directly supported. But arrays are supported, therefore a pointer can always be built
from an array and element number. Note that, for example, string operation functions, such as strcpy,
receive a string and a byte number (index) as parameters, which form the pointer. In function
declarations, index is equal to zero by default.

• Pointers to functions are not supported. If necessary, a table call can always be replaced with the
switch operator.

• Multidimensional arrays are not supported. If it is necessary, you can write a couple of functions,
such as:

 int GetElement(int array[], int index1, int index2);
 void SetElement(int array[], int index1, int index2, int value);

• Structures (and unions) are not supported. In fact, you can always do without structures. Structures
may be required for API Windows and user DLLs operations, but as a rule only experienced
programmers should do it, such as those who know how to reach structure elements. As a tip, there are
functions, such as memcpy, which receive a void "pointer").

• Enumerated types (enum) are not supported #define.

• Preprocessor macros, such as #define half(x) (x / 2), are not supported. The same operations can
be done with functions.

• Conditional operators such as x = y == 2? 3 : 4;, are not supported; the operator "comma" outside
variable declaration is not supported. For example,

 int i = 0, j = 1; is supported, but
 for (i = 0, j = 1; ...) is not supported.

• User functions with a variable amount of parameters are not supported. However, there are many
system functions, such as printf, with a variable number of parameters.

• Declaration of user function parameters such as void array[] is not supported. The system functions
such as memcpy, have such parameters.

• Logical expressions are always fully computed. It is very important to remember it, as a situation like

 char array[10];
 if (i < 10 && array[i] != 0)
 array[i] = 1;

will cause an error at the execution stage, if i is greater than 9, because the expression of array[i] will be
computed. In a standard compiler such an expression is not computed, because the condition of i > 10
would cancel any further processing of the expression.

• Constant expressions are always computed during execution. For example, int i = 10 * 22 will be
computed not during compilation, but during execution.

• The const key word is absent.

• Static variables cannot be declared inside functions.

But

• Variables can be declared anywhere, not just in front of the first executed operator. For example:

 void main()
 {
 GlobalVar = 0;
 int i = 1; // will be OK as in C++
 }

• Nested comments are allowed.

• Expressions like array = "1234" are allowed.

• Default parameter values in declared functions, as in C++, are allowed. For example, void func
(char array[],int index = 0);. Expressions can also serve as default values, for example void func(char
array[], int index = func1() + 1);.

• Expressions in global variable initializers are allowed. For example:

 float table[] = { sin(0), sin(0.1) };

 void main()
 {
 ...
 }

References 121

© 2008 Phyton, Inc. Microsystems and Development Tools

7.4.6 Script Language Built-in Functions and Variables

ChipProg Device Programmers122

© 2008 Phyton, Inc. Microsystems and Development Tools

The list below includes all the names of the script language built-in functions and variables:

AllProgOptionsDefault

API

ActivateWindow

AddButton

AddWatch

ApplName[]

BackSpace

BlankCheck

BlockBegin

BlockCol1

BlockCol2

BlockCopy

BlockDelete

BlockEnd

BlockFastCopy

BlockLine1

BlockLine2

BlockMove

BlockOff

BlockPaste

BlockStatus

BufferStartAddr

CaseSensitive

CheckSum

ChipEndAddr
ChipStartAddr

ClearWindow

CloseProject

CloseWindow

Cr

CurChar

CurCol

CurLine

Curcuit
DelChar

DelLine

DesktopName[]

DialogOnError

DisplayText

DisplayTextF

Down

Ellipse

Eof

Eol

ExecFunction

ExecMenu

ExecScript

ExitProgram
Expr

FileChanged

FillRect

FindWindow

FirstWord

FloatExpr

ForwardTill

ForwardTillNot

FrameRect

FreeLibrary

GetByte

GetDword

GetFileName

GetLine

GetMark

GetMemory

GetProgOptionBits
GetProgOptionFloat
GetProgOptionList
GetProgOptionLong

GetProgOptionString

GetScriptFileName

GetWindowHeight

GetWindowWidth

GetWord

GotoXY

InsertMode

InsertTest

Inspect

InvertRect

LastChar

LastErrorMessage

LastEvent

LastEventInt{1...4}

LastFoundString

LastMessageInt

LastMessageLong

LastString

Left

LineTo

LoadDesktop

LoadLibrary

LoadOptions

LoadProgram

LoadProject

MainWindowHandle

MaxAddr

MessageBox

MessageBoxEx

MinAddr

MoveTo

MoveWindow

NumWindows

OpenEditorWindow

OpenStreamWindow

OpenUserWindow

OpenWindow

Polyline

ProgOptionDefault

Rectangle

RedrawScreen

RegularExpressions

ReloadProgram

RemoveButtons

ReverseBytesOrder

Right

SaveData

SaveDesktop

SaveFile

SaveOptions

Search

SearchReplace

SelectBrush

SelectFont

SelectPen

SelectedString[]

SetBkColor

SetBkMode
SetByte

SetCaption

SetDevice

SetDWord

SetFileName

SetMark

SetMemory

SetPixel

SetProgOption

SetTextColor

SetToolbar

SetUpdateMode

SetWindowFont

SetWindowSize

SetWindowSizeT

SetWord

SystemDir[]

TerminateAllScripts

TerminateScript

Text

Tof

Up

UpdateWindow

VerifyAfterProgram

VerifyAfterRead

WaitEprTrue

WaitGetMessage

WaitSendMessage

WaitWindowEvent

WholeWords

WindowHandles[]

WindowHotkey

WordLeft

WordRight

WorkFieldHeight

WorkFieldWidth

_GetWord

_ff_attrib

_ff_date

_ff_name

_ff_size

_ff_time

_fmode

_fullpath

_printf

abs

acos

asin

atan

atof

atoi

ceil

chdir

chsize

clearerr

close

cos

creat

creatnew

creattemp

delay

difftime

dup

dup2

eof

errno

exec

exit

exp

fabs

fclose

fdopen

feof

ferror

fflush

fgetc

fgets

filelength

fileno

findfirst

findnext

floor

fmod

fnmerge

fnsplit

fopen

fprintf

fputc

fputs

fread

freopen

frexp

fscanf

fseek

ftell

fwrite

getc

getcurdir

getcwd

getdate

getdfree

getdisk()

getenv

getftime

gettime

getw

inport

inportb

isalnum

isalpha

isascii

isatty

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

itoa

lock

locking

log

log10

lseek

ltoa

memccpy

memchr

memcmp

memcpy

memicmp

memmove

memset

mkdir

movmem

mprintf

open

outport

outportb

peek

peekb

poke

pokeb

pow

pow10

printf

pscanf

putc

putenv

putw

rand

random

randomize

read

rename

rewind

rmdir

scanf

searchpath

setdisk

setftime

setmem

setmode

sin

sprintf

sqrt

srand

sscanf

stpcpy

strcat

strchr

strcmp

strcmpi

strcpy

strcspn

stricmp

strlen

strlwr

strncat

strncmp

strncmpi

strncpy

strnicmp

strnset

strpbrk

strrchr

strrev

strset

strspn

strstr

strtol

strtoul

strupr

tan

tanh

tell

toascii

tolower

toupper

ultoa

unlink

unlock

wgetchar

wgethex

wgetstring

wprintf

write

References 123

© 2008 Phyton, Inc. Microsystems and Development Tools

7.5 In-System Programming for different devices

NOTE! Always carefully check connecting your ChipProg programmer to the target. Wrong
connecting may and probably will cause destruction of the programmer's and/or the target
system's hardware.

Most embedded microcontrollers have different algorithms for the ISP procedure. See the following
topics regarding the ISP for popular microcontrollers:

Specific of the in-system programming of the Microchip PICmicro

Specific of the in-system programming of the Atmel AVR microcontrollers

Specific of the in-system programming of the Atmel 8051 microcontrollers

7.5.1 Specific of programming PICmicro

1. Most of the PIC microcontrollers produced by Microchip Technology Corporation require a special
HV ISP Programming Mode (High-Voltage in-System Programming Mode). In this mode a
relatively high voltage of 13V is applied to the MCLR device pin. The user's equipment to be
programmed should be designed in the way tolerating a 13V signal to be applied to the MCLR
device pin - in particular this pin should not be connected to the Vcc pin of the device.

2. Though the PIC microcontrollers are capable to work in a certain range on the Vcc voltage (the
range varies from 2 to 5V for some PICmicro derivatives) the device being under programming
must have the 5V voltage level applied to the Vcc device pin. If in the working mode the target
microcontroller works under the Vcc lower than 5V and the target cannot tolerate applying the 5V
voltage to the Vcc pin, then, if the user needs to program the PICmicro device in-system, it is
necessary to change the schematic to have an ability to connect 5V to the Vcc pin while the target
is under the programming. However, verification of the correct programming can be conducted
under the voltages allowed by the manufacturer (Vcc min - Vcc max).

7.5.2 Specific of programming AVR microcontrollers

Microcontrollers of the Atmel AVR series can be programmed in-system being under a normal Vcc
voltage. Practically all AVR microcontrollers require clocking while they are under in-system
programming. ChipProg programmers are capable to send clocks to the target microcontroller but
sometimes the systems based on AVR microcontrollers have their own built-in clock generators.

1. If the system has its own built-in clock generator then make sure that the clock line of the
ChipProg cable adapter is not connected to the clock input pin of the target microcontroller,
otherwise it may destroy either the target or programmer hardware. What you need in this case is
just to enter a value of the generator clock frequency in the Algorithm Parameters > Oscillator
Frequency field in the Device and Algorithm Parameters Editor window (see on the picture
below). By default the Oscillator Frequency value is 2.5 MHz. To change it double click the
Oscillator Frequency line displayed in blue color and enter the Fclk value into the popped up
dialog. If the actual clock frequency differs from the value set in the window the correct
programming will be impossible.

ChipProg Device Programmers124

© 2008 Phyton, Inc. Microsystems and Development Tools

2. If the target system does not have its own built-in clock generator then, the target AVR device
needs to get clocks from the ChipProg built-in generator; thus the clock output wire of the
cable-adapter should be connected to an appropriate clock input pin of the target device. By
default the Fclk= 2.5 MHz. It can be set in the range of the Fclk allowed for a particular selected
target AVR device in the Algorithm Parameters > Oscillator Frequency field in the Device and
Algorithm Parameters Editor window (see the picture above).

7.5.3 Specific of programming Atmel 8051 microcontrollers

Microcontrollers of the Atmel 8051 family (AT89 series) can be programmed in-system being under
a normal Vcc voltage. Practically all these microcontrollers require clocking while they are under
in-system programming. ChipProg programmers are capable to send clocks to the target
microcontroller but sometimes the systems based on the Atmel 8051 microcontrollers have their
own built-in clock generators.

1. If the system has its own built-in clock generator then make sure that the clock line of the
ChipProg cable adapter is not connected to the clock input pin of the target microcontroller,
otherwise it may destroy either the target or programmer hardware.

2. If the target system does not have its own built-in clock generator then, the target device
needs to get clocks from the ChipProg built-in generator; thus the clock output wire of the
cable-adapter should be connected to an appropriate clock input pin of the target device.

Index 125

© 2008 Phyton, Inc. Microsystems and Development Tools

Index
- A -
About

software version 61

Adapters 78

Adapters attachment

list 80

Adapters Connections List 78

Add Watch

dialog 106

Algorithm Parameters 67

Alphabetical List of Script Language Built-in
Functions and Variables 121

Angstrem SAV 76

ASCII Hex 76

Auto Programming 63

Auto-detect

device in a socket 82

Auto-detect device in a socket 82

Automatic Word Completion 101

AutoWatches

pane 105

AutoWatches pane 105

AVR microcontroller 123

- B -
Backspace unindents 56

Binary image 76

Block Operations 103

Blocks

copying / moving 103

line blocks 103

non-persistent blocks 103

persistent 56

persistent blocks 103

standard blocks 103

vertical 56

vertical blocks 103

Buffer 8

Buffer Configuration

dialog 44

Buffer Dump

window 70

Buffers

dialog 44

memory allocation 44

- C -
Calculator

dialog 59

Check Blank 83

check box 68

Checksum 46

ChipProg

main menu 36

ChipProg programmers 10

ChipProg-40 31

brief characteristics 16

bundle 15

hardware characteristics 16

software characteristics 17

ChipProg-48 30

brief characteristics 13, 18

bundle 12

hardware characteristics 14

software characteristics 14

ChipProg-G4 31

bundle 17

hardware characteristics 18

software characteristics 19

ChipProg-ISP 32

brief characteristics 22

bundle 20

hardware characteristics 22

software characteristics 22

Colors 52

tab 52

Command-Line Parameters 108

Commands

menu 58

Commands Menu 58

Condensed Mode 100

Condensed Mode Setup

dialog 100

Configurating Editor

dialog 54

Configuration

buffer 44

editor Options 43

ChipProg Device Programmers126

© 2008 Phyton, Inc. Microsystems and Development Tools

Configuration

environment 43

Configuration Files 38

Configuration Menu 43

Configure the device to be programmed 84

Configuring a Buffer

dialog 71

Confirm Replace

dialog 98

Console

window 81

Window Console 81

Contact Information 34

- D -
Define Font 51

Define key 52

Definitions

adapter 8

buffer 8

memory buffer 8

sub-level 8

Description of Script Language 117

Detect

device in a socket 82

Device

set into a socket 82

Device and Algorithm Parameters

window 67

Device Information

window 78

Device parameters 67

parameters 68

Difference Between the Script Language and the C
Language 119

Display from address

dialog 74

Display from Line Number

dialog 101

Display Watches Options

dialog 106

Drivers

USB 27

drop-down menu 68

Duplicate a device 86

- E -
Edit Information to be programmed 84

Edit Key Command

dialog 57

Editor Key Mapping

tab 57

Editor window 95

Environment

dialog 50

Erase 83

Even byte 65

Examples of Expressions 115

Expressions 112

- F -
File format 76

File Menu

overview 37

Fonts 51

tab 51

- G -
General Editor

settings 56

- H -
Help

menu 61

On-line 33

Highlight

multi-line Comments 56

Highlight Active Tabs 54

Highlighting

Syntax 56, 101

History file 38

Holtek OTR 76

Hot Keys 52

How to Get On-line Help 33

How to start a script file 104

How to write a script file 94

Index 127

© 2008 Phyton, Inc. Microsystems and Development Tools

- I -
I/O Stream

window 107

ICP 8

Insert DIP in socket 82

Install ChipProg 24

Install the ChipProg Software 24

Installing the USB Drivers 27

In-System programming 90, 123

Introduction 7

ISP

ISP HV Mode 8

ISP Mode 8

- J -
JEDEC 76

- L -
List

Adapters connections 78

Load file

dialog 76

Load session 38

Load the file into the buffer 84

Log file 47

- M -
Main menu

commands 36

Main menu bar 36

Mapping

hot keys 52

MCS-51 microcontroller 124

Memory Dump Window Setup

dialog 72

Memory Blocks

operations 75

Menu

Project 40

View 39

Menu File

load file 37

save file 37

Menu Help 61

Menu Script 60

Message box

always display 54

Messages

tab 53

Microchip PICmicro microcontroller 123

Miscellaneous Settings 54

Modify Address

dialog 74

Modify Memory

dialog 74

Motorola S-record 76

Multi-File Search Results

dialog 99

Multi-programming mode 86

- N -
Numbers 115

- O -
Odd byte 65

On-line Help 33

Open Project 41

dialog 41

Operations with Expressions 114

Operations with Memory Blocks 75

Options

dialog 49

Options&split

dialog 64, 88

Overview

User Interface 35

- P -
Packages/Adapters 43

POF 76

Preferances 49

PRG 76

Program a Device 83

Program Manager

Auto Programming 62, 88

dialog 62, 88

ChipProg Device Programmers128

© 2008 Phyton, Inc. Microsystems and Development Tools

Program Manager

Operation Progress 62, 88

window 61, 87

Program, Write 58

Programmer 7

ChipProg-40 31

ChipProg-48 30

ChipProg-G4 31

ChipProg-ISP 32

work with 82

Programmers

ChipProgUSB 10

comparison characteristics 11

Programmers ChipProg-40 15

Programmers ChipProg-48 12

Programmers ChipProg-G4 17

Programmers ChipProg-ISP 20

Programming

check blank 83

configure the device 84

duplicate a device 86

edit Information 84

erase 83

load the file 84

program a Device 83

program functions 83

read a device 85

save the data 85

verify 85

write Information into the Device 84

Programming adapters 78

Programming characteristics

AVR microcontroller 123

MCS-51 microcontroller 124

PICmicro microcontroller 123

Programming in target board 90, 123

Project Menu 40

Project Options 40

dialog 40

Project Repository

dialog 42

- Q -
Quick Start 23

Quick Watch

enabled 54

Quick Watch Function 102

- R -
Read a Device 85

Regular Expressions

search for 99

Replace Text

dialog 97

Repository 42

Run ChipProg 10

- S -
Save file from buffer

dialog 77

Save session 38

Save the data read out from a device 85

Script 92, 93, 116

menu 60

Script Files 92, 116

dialog 93

Script Language Built-in Functions 117

Script Language Built-in Variables 118

Script source window

open 93

Search for Regular Expressions 99

Search for Text

dialog 96

Search mask 43

Select color 52

Select device 43

dialog 43

Serialization 45

Serialization, Checksum, Log file

dialog 45

Set device into a socket 82

Set/Retrieve Bookmark

dialog 100

Signature String 47

Simple example of a script file 116

Sounds 49

Split data 65

Standard/Extended Intel HEX 76

Statistics

dialog 66, 89

Sub-layer

additional 45

Index 129

© 2008 Phyton, Inc. Microsystems and Development Tools

Sub-layer

main 44

Sub-Layer 'Code' 44

Sub-layer 'ID location' 45

Support 33

Syntax Highlighting 101

System Requirements 10

- T -
Tab Size 56

Technical Support 33

Terminology 8

Terminology and Definitions 8

Text Edit 95

Toolbar

tab 53

- U -
Undo Count 56

USB Drivers 27

User

window 107

User Interface

overview 35

- V -
Verify programming 85

View 39

View Menu 39

- W -
Watches

window 105

Watches Window

add Watch 106

display Watches Options 106

Window

menu 60

Menu Window 60

Window Device Information 78

Window Dump Setup

dialog 72

Window Editor 95

Window I/O Stream 107

Window Program Manager 61, 87

Window User 107

Window Watches 105

Windows 61

Word Completion 101

Work with Programmer 82

Write Information into the Device 84

Back Cover

	Introduction
	Terms and Definitions
	System Requirements

	ChipProg Family Brief Description
	Comparisson matrix
	ChipProg-48
	Major features
	Hardware characteristics
	Software features

	ChipProg-40
	Major features
	Hardware characteristics
	Software features

	ChipProg-G4
	Major features
	Hardware characteristics
	Software features

	ChipProg-ISP
	Major features
	Hardware characteristics
	Software features

	Quick Start
	Installing the ChipProgUSB Software
	Installing the USB Drivers
	Hardware installation
	ChipProg-48
	ChipProg-40
	ChipProg-G4
	ChipProg-ISP

	Getting Assistance
	On-line Help
	Technical Support
	Contact Information

	Graphical User Interface
	User Interface Overview
	Toolbars
	Menus
	The File Menu
	Configuration Files

	The View Menu
	The Project Menu
	The Project Options Dialog
	The Open Project Dialog
	Project Repository

	The Configure Menu
	The Select Device dialog
	The Buffers dialog
	The Buffer Configuration dialog
	Main Buffer Layer
	Buffer Layers

	The Serialization, Checksum and Log dialog
	Device Serialization
	Checksum
	Signature string
	Log file

	The Preferences dialog
	The Environment dialog
	Fonts
	Colors
	Mapping Hot Keys
	Toolbar
	Messages
	Miscellaneous Settings

	Configurating Editor Dialog
	General Editor Settings
	The Editor Key Mapping
	The Edit Key Command Dialog

	The Commands Menu
	Calculator

	The Script Menu
	The Window Menu
	The Help Menu

	Windows
	The Program Manager Window
	The Program Manager tab
	Auto Programming

	The Options tab
	Split data

	The Statistics tab

	The Device and Algorithm Parameters window
	Buffer Dump Window
	The 'Configuring a Buffer' dialog
	The 'Buffer Setup' dialog
	The 'Display from address' dialog
	The 'Modify Data' dialog
	The 'Memory Blocks' dialog
	The 'Load File' dialog
	File Formats

	The 'Save File' dialog

	The Device Information window
	Phyton programming adapters
	Adapters for in-system programming

	The Console Window
	Windows for Scripts

	Operating with ChipProg programmers
	Inserting devices to a programming socket
	Auto-detecting the device
	Basic programming functions
	How to check if a device is blank
	How to erase a device
	How to program a device
	How to load a file into a buffer
	How to edit information before programming
	How to configure the chosen device
	How to write information into the device

	How to read a device
	How to verify programming
	How to save data on a disc
	How to duplicate a device

	Multi- and Gang-programming
	The Program Manager Window
	The Program Manager tab
	The Options tab
	The Statistics tab

	In-System Programming

	Script Files
	The Script Files Dialog
	How to create and edit script files
	The Editor Window
	Text Edit
	The Search for Text Dialog
	The Replace Text Dialog
	The Confirm Replace Dialog
	The Multi-File Search Results Dialog
	Search for Regular Expressions
	The Set/Retrieve Bookmark Dialogs
	Condensed Mode
	The Condensed Mode Setup Dialog
	Automatic Word Completion
	Syntax Highlighting
	The Display from Line Number Dialog
	The Quick Watch Function
	Block Operations

	How to start and debug script files
	The AutoWatches Pane
	The Watches Window
	The Display Watches Options Dialog
	The Add Watch Dialog

	The User Window
	The I/O Stream Window

	References
	Command line keys
	Errors Messages
	Error Load/ Save File
	Error Addresses
	Error sizes
	Error command-line option
	Error Programming option
	Error DLL
	Error USB
	Error programmer hardware
	Error internal
	Error confiquration
	Error device
	Error check box
	Error mix
	Warning

	Expressions
	Operations with Expressions
	Numbers
	Examples of Expressions

	Script Language
	Simple example
	Description
	Built-in Functions
	Built-in Variables
	Difference between the Script and the C Languages
	Script Language Built-in Functions and Variables

	In-System Programming for different devices
	Specific of programming PICmicro
	Specific of programming AVR microcontrollers
	Specific of programming Atmel 8051 microcontrollers

