

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

1

Report No:

AN127
Title:

In-System Programming (ISP) of the Atmel
XMEGA AVR FLASH Microcontroller Family
Author: Date: Version Number:
John Marriott

06th January 2013 1.14

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be
changed without prior notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not
convey nor imply any license under patent or other industrial or intellectual property rights

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

2

Contents
1.0 Introduction ... 4

1.1 Overview of programmers supporting XMEGA PDI devices ... 6
1.1.1 Portable ISP Programmers .. 6
1.1.2 Single channel Production ISP Programmers .. 6
1.1.3 Multiplexed sequential Production ISP Programmers .. 7
1.1.4 Multi-channel GANG Production ISP Programming Systems ... 8

1.2 XMEGA PDI – programmer cross reference guide ... 9
1.3 XMEGA Device Support ... 11

2.0 XMEGA Programming Interfaces ... 12
2.1 Overview of XMEGA Programming Interfaces .. 12
2.2 Comparison of XMEGA PDI and JTAG algorithms ... 13
2.3 Overview of PDI Interface .. 16
2.4 PDI – Physical Interface ... 16
2.5 Overview of JTAG Interface ... 17

3.0 PDI Algorithm .. 19
3.1 Overview of PDI Interface .. 19
3.2 PDI – Physical Interface ... 19
3.3 PDI – Clock Signal (XMEGA RESET pin) ... 20
3.4 PDI – Data Signal .. 21
3.4 PDI – Data Signal .. 21
3.5 ISPnano Series 3 - Target ISP Port – PDI pin-out .. 22
3.6 Single XMEGA device – PDI programming connections .. 23
3.7 Single XMEGA PDI + AVR SPI – programming connections .. 25
3.8 XMEGA PDI – ISP cable length recommendations .. 27
3.9 Signal / Power GROUND (0V) connections .. 27
3.10 Enabling PDI programming mode .. 28

4.0 Creating an EDS Development Project .. 29
4.1 Overview .. 29
4.2 Information required to create an XMEGA PDI Project ... 29
4.3 Launching the EDS Wizard .. 30
4.4 Selecting the attached programmer ... 31
4.5 Selecting the target XMEGA device ... 31
4.6 Selecting the XMEGA oscillator settings .. 32
4.7 Setting up the Target Power Supply ... 33
4.8 Setting up the XMEGA ‘Erase Options’ .. 33
4.9 Setting up the XMEGA ‘FLASH Programming’ ... 34
4.10 Setting up the XMEGA ‘EEPROM Programming’ ... 35
4.11 Saving the EDS setup file ... 36
4.12 Testing an EDS programming Project .. 36
4.13 Checking the Device Signature (ID) of a target device ... 37
4.14 Cannot Enter Programming Mode error ... 37

Appendix 1 – CONMOD Module + XMEGA PDI .. 39
1.0 Overview .. 39

Appendix 2 – ISPnano-QC1 Quick Connect Module ... 40
1.0 Overview .. 40
1.1 Quick-Connect connector pin-out ... 41

Appendix 3 – Using ConsoleEDS to program XMEGA PDI devices ... 43
1.0 Overview .. 43
1.1 Explanation of ConsoleEDS ‘Base Projects’ ... 43
1.2 Setting up a ConsoleEDS ‘Base Project’ .. 43
1.3 Reading the ‘Device Signature / ID’ .. 44
1.4 Erasing the FLASH and EEPROM ... 44

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

3

1.5 Programming the FLASH using the /FLASHWRITE command ... 45
1.6 Programming the ‘User Signature Row’ .. 45
1.7 Programming the Fuses using the /FUSEWRITE command ... 46
1.8 Reading the Fuses using the /FUSEREAD command .. 46
1.9 Programming the ‘Security Fuses’ using the /SECURITYWRITE command 47
1.10 Reading the ‘Security Fuses’ using the /SECURITYREAD command 47
1.11 Executing a ‘Standalone Programming Project’ .. 47
1.12 Mixing a ‘Standalone project’ with individual programming commands 48
1.13 Typical XMEGA programming sequence .. 49

Appendix 4 – XMEGA Fuse Verify problems .. 50
1.0 Problem description .. 50
1.1 Error numbers / message for XMEGA Fuse Verify problem .. 50
1.2 Fix for this problem ... 51

Appendix 5 – PDI Clock Buffer module .. 52
1.0 Overview .. 52
1.2 XMEGA PDI Buffered ISP Cable .. 52
1.3 XMEGA PDI Buffered ISP Cable - Features ... 53
1.4 Recommended Clock Buffer module location ... 53
• The PDI CLOCK and PDI_DATA wiring between the ‘Clock Buffer module’ and fixture probe-
pins should be a maximum of e.g. 3 – 4 cm. ... 53
1.5 Clock Buffer functional explanation ... 54
1.6 Clock Buffer Module – 10-way IDC pin-out ... 55
1.7 Clock Buffer Module – Outputs to the DUT ... 56
1.8 Controlling the PDI Clock Buffered output ... 57

Appendix 6 – XMEGA PDI Design guidelines .. 58
1.0 Overview .. 58
1.1 XMEGA RESET circuit ... 58
1.2 XMEGA PDI - CLOCK signal line (RESET) .. 58
1.3 XMEGA PDI - DATA signal line .. 58
1.4 PDI programming cable length ... 59

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

4

1.0 Introduction
This application note describes how to develop and implement In-System Programming (ISP)
support for the Atmel ATxmega AVR microcontroller family the ‘2-wire PDI’ programming interface.
The document details how to create a ‘Programming Project’ which will operate on any Equinox ISP
programmer. The document describes the physical connections required from the programmer to the
target XMEGA microcontroller and also details the different ISP Header Connector pin-outs which are
currently available.

The Equinox programming range includes solutions for development, low / mid / high volume
production and field programming of Atmel XMEGA AVR microcontrollers.

General features…..
• High-speed In-System Programming (ISP) support of Atmel XMEGA AVR microcontrollers
• Programming solutions for development, low / mid / high volume production and field

programming applications
• Supports high-speed programming of the XMEGA on-chip FLASH / EEPROM memory areas

and Configuration Fuses / Security Fuses
• Uses Atmel proprietary ‘2-wire PDI’ serial programming interface
• Very high-speed programming due to local data storage, optimised programming algorithms

and high-speed PDI driver circuitry
• Dedicated high-speed PDI driver circuitry with full ESD and over-voltage protection
• Programmers can be used in "Standalone Mode" (no PC required)
• Supports high-speed program / verify of the on-chip FLASH, EEPROM, Configuration Fuses

and Security Fuses in a singe operation.
• Support for writing / reading the XMEGA ‘User Signature Row’ memory area
• Support for programming the XMEGA ‘User Signature Row’ memory area in Standalone

Mode (new)
• Support for reading the XMEGA ‘Production Signature Row’ memory area
• Optimised Erase operations – supports individual control over erasing of the Application

Sector, Application Table, User Signature Row and EEPROM areas.
• Supports programming of non volatile ‘Fuse Bits’
• Supports programming of the ‘Security Fuses’ to protect code from being read out
• Supports importing of ‘Atmel ELF File’ which contains XMEGA FLASH / EEPROM File +

Fuse / Security hex values
• ISPnano programmers support programming of both an Atmel XMEGA and a standard AVR

microcontroller from a single programmer

In ‘Development Mode’…..
• Powerful yet simple-to-use Development Suite called ‘EDS’
• All aspects of programming the XMEGA AVR device can be controlled from EDS
• Supports reading back/ display of the ‘User Signature Row’ from a target XMEGA device

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

5

In ‘Production Mode’…..
• Programmers can be used in "Standalone Mode" (no PC required)
• Programmers can be controlled via TTL wire control, ASCII protocol, ConsoleEDS console

application and ISP-PRO production programmer monitoring application
• Scaleable production programming solution – up to 32 x ISPnano programmers can be

controlled from a single PC COM port
• A single ‘Standalone Programming Project’ can Erase the device, program /verify the

FLASH / EEPROM, program the Configuration Fuses and finally secure the device in a single
operation.

• Up to 64 x independent XMEGA AVR ‘Standalone Programming Projects’ can be stored
inside an ISPnano or ISPjuno programmer.

• Support for programming the XMEGA ‘User Signature Row’ memory area in Standalone
Mode (new)

• Supports importing of production settings from an ‘Atmel ELF file’
• Programmer can store multiple versions of firmware for different ‘customer product

versions’ or ‘functional test versions’ of firmware.
• It is possible to program unique ‘Serial Numbers’, ‘MAC addresses’ and ‘Calibration Data’

into either the FLASH or EEPROM area of the target XMEGA device using either our
ConsoleEDS or ISP-PRO control applications.

• Batch statistics - It is possible to log batch programming statistics including a product barcode
label ID number to a database.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

6

1.1 Overview of programmers supporting XMEGA PDI devices
Programming support for the Atmel XMEGA AVR microcontroller family is currently available on the
‘ISPnano Series 3’ and ‘ISPnano Series 4’ range of production ISP programmers.

1.1.1 Portable ISP Programmers
The ISPjuno programmer is portable ISP programmer designed for development, field and small
volume production programming applications.

Portable ISP Programmer supporting
standalone operation and capable of

storing up to 64 ‘standalone
programming projects’

1.1.2 Single channel Production ISP Programmers
The ISPnano range of programmers are designed for direct integration into programming / test
fixtures. Their compact design allows them to be placed directly under the bed-of-nails in a fixture.
The range includes versions with galvanic relay isolation which are ideal for use in fixtures where both
programming and testing take place on the same fixture.

Single channel ISP programmer

Single channel ISP programmer with

relay isolation

Single channel ISP programmer

with plug-in connector module, relay
signal isolation and opto-isolated TTL

control port

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

7

1.1.3 Multiplexed sequential Production ISP Programmers
The ISPnano-MUX range of programmers are specially designed to program PCBs on a multi-PCB
panel. A single programmer is multiplexed to 2 or 4 or 8 PCBs (DUT’s) allowing up to 8 PCBs to be
programmed in a sequential manner.

2 channel

Multiplexed programming system

4 channel

Multiplexed programming system

8 channel

Multiplexed programming system

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

8

1.1.4 Multi-channel GANG Production ISP Programming Systems
The ISPnanoS3-GANG range of programmers are comprised of 4, 6 or 8 independent ‘ISPnano
Series 3’ programmers mounted to a bracket. These systems are capable of programming 4, 6 or 8
PCBs (DUTs) in parallel (at the same time) and so are ideally suited to very high volume production
environments where all the PCBs on a multi-PCB panel must be programmed concurrently.

ISPnano
Series IV

Gang Systems
4 / 6 / 8 channel systems

Multi-channel

parallel programming systems for
programming multiple DUTs

concurrently on a ‘PCB Panel’

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

9

1.2 XMEGA PDI – programmer cross reference guide
The table below details the range of programmers available which support programming of the Atmel
XMEGA PDI programming.

Programmer
picture

Programmer name PDI
algorithm

JTAG
algorithm

Programming
channels

Comment

ISPnano Series 3 Yes
– available

now

Please
contact
Equinox

1 - 32 Requires
CONMOD
or Quick-
Connect
module

ISPnano Series 3
ATE

Yes
– available

now

Please
contact
Equinox

1 - 32 Requires
CONMOD
or Quick-
Connect
module

ISPnano Series 4 Yes
– available

now

Please
contact
Equinox

1 - 32 All XMEGA
PDI

circuitry is
included on

plug-in
IO-CON
module.

ISPnano-MUX2 Yes
– available

now

Please
contact
Equinox

2 sequential 64
(32 x 2)

ISPnano-MUX4 Yes
– available

now

Please
contact
Equinox

4 sequential 128
(32 x 4)

ISPnano-MUX8 Yes
– available

now

Please
contact
Equinox

8 sequential 256
(32 x 8)

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

10

ISPjuno Please
contact
Equinox

Please
contact
Equinox

1 1

Please note:

• The ‘ISPnano Series 3’ programmer range supports uploading of up to 64 independent
‘Standalone Programming Projects’.

• The XMEGA 2-wire PDI programming interface cannot be supported on the Equinox FS2003,
FS2009, Epsilon5, PPM3-MK2 or PPM4-MK1 programmers as these programmers do not
feature the correct hardware to allow PDI to be implemented.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

11

1.3 XMEGA Device Support
The Equinox ‘ISPnano Series 3’ programmer is capable of supporting ‘2-wire PDI’ programming of
the entire Atmel XMEGA AVR microcontroller family.

Important note:

• We only support programming of XMEGA AVR devices via the ‘2-wire PDI’ programming
interface.

• The JTAG programming interface is currently not supported.

The table below lists all the devices in the XMEGA ‘A1’ family.

The table below lists all the devices in the XMEGA ‘D4’ family.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

12

2.0 XMEGA Programming Interfaces
2.1 Overview of XMEGA Programming Interfaces
The Atmel XMEGA AVR microcontroller family feature either one or both of the following physical
interfaces:

Interface
Name

Interface description Number of
interface
signals

XMEGA pins required for
programming

PDI Program and Debug Interface 2-wire • PDI_CLK (RESET)
• PDI_DATA

JTAG JTAG Program / Debug Interface 4-wire + RESET • TDI, TMI, TCK, TDO
• RESET

A graphical overview of the ‘PDI’ and ‘JTAG’ interfaces is shown in the diagram below.

It is possible to perform both programming and debugging using either of the two physical interfaces.
The primary interface is the ‘PDI Physical Interface’. This is a 2-pin interface which uses the RESET
pin for the clock input (PDI_CLK), and the dedicated test pin PDI_DATA for data input and output

A 4-pin JTAG interface is also available on most of the higher pin-count XMEGA devices (but not all),
and this interface can be used for programming and debugging. The JTAG interface is IEEE std.
1149.1 compliant, and supports JTAG boundary scan. Control of the RESET pin is also required by
the programmer in order to halt user code execution.

Important note:

• The 2-wire PDI interface uses the XMEGA RESET pin as the PDI_CLOCK pin. This means
that the RESET pin must be dedicated for programming and cannot be used as a standard
RESET pin.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

13

2.2 Comparison of XMEGA PDI and JTAG algorithms
The table below compares the JTAG and SPI programming algorithms for the Atmel XMEGA AVR
family of microcontrollers.

Parameter

PDI algorithm JTAG algorithm Comments

Equinox programming
support availability

Yes
All XMEGA devices
supported.

No
We have no plans to
support the JTAG
algorithm

Equinox only currently
support the 2-wire PDI
algorithm.

PDI / JTAG Port
availability on XMEGA
devices

PDI port available
on all XMEGA
devices

JTAG port only
available on higher pin-
count XMEGA devices.

Use PDI if you need a
common interface to all
XMEGA devices.
See note 1.

Programming speed Marginally faster
than JTAG

Marginally slower than
PDI

Depends on PDI / JTAG
clock frequencies
See note 2.

Programming reliability Very good
Not reliable with
long ISP cables.

Very good Possible problems with
PDI data integrity
See note 3.

In-System Debugging Yes – use Atmel
JTAG-ICE debugger

Yes – use Atmel JTAG-
ICE debugger

JTAG port normally
used during
development phase for
both PDI and JTAG.
See note 4.

ISP programming cable
length

Max PDI cable
length is 10 cm

Max JTAG cable length
is 25 cm

Problem with clock
integrity in PDI mode
when using long cables.

Boundary Scan Testing Not possible Yes – requires external
JTAG tester

Very useful for
production testing.
See note 5.

Multiple XMEGA AVR
programming on same
Target Board

Very difficult in PDI
mode

Possible to daisy-chain
multiple XMEGA AVR
devices in a JTAG
chain.

Only one device can be
programmed at a time.

Programming pins
required

2 x PDI pins
PDI_CLK (RESET),
PDI_DATA

4 x JTAG pins +
RESET
TDI, TDO, TCK, TMS

PDI uses RESET pin for
the PDI_CLK.
See note 6.

Programming pins can
be used for user I/O?

No – PDI pins are
dedicated for
programming.

Not recommended No other components
are allowed on the pins.

RESET pin control
required?

Yes
RESET pin is the
PDI Clock. It be
used as normal
RESET pin.

Yes
RESET pin is used to
stop user code from
disabling JTAG access.

The RESET pin is
essential for PDI and
JTAG operation.
See note 6.

RESET pin isolation
during programming

The PDI_CLK pin is
the XMEGA RESET
pin. Customer
RESET circuit must
be isolated during
PDI programming.

No Careful design of the
target RESET circuit is
required to allow
production programming
via the PDI interface.
See note 6.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

14

XMEGA static current
consumption

PDI interface does
not affect static
current

XMEGA device will
take more current if
JTAG port is enabled

Always disable JTAG
port if low current
consumption is required.

On-chip accurate
oscillator calibration

Probably not
possible

Yes
The JTAG TDI pin is
used to inject a
calibration signal

Please contact Equinox
for further information

PDI / JTAG Port availability (note 1)

• The 2-wire PDI port is available on all XMEGA devices in the family.
• The 4-wire JTAG port is only available on higher pin-count XMEGA devices.
• If you would like to use the same programming interface for all XMEGA devices, then PDI

would be the best choice.

Programming speed (note 2)
It is likely that the PDI algorithm will be marginally faster than the JTAG algorithm as the JTAG
algorithm is effectively the PDI protocol sent via JTAG with lots of passing bytes. So even though PDI
features bi-directional data transfer, it will still probably be faster than JTAG.

Programming reliability (note 3)
The PDI algorithm uses a synchronous clock on the RESET pin of the XMEGA device. If there is any
capacitance on the RESET pin eg. a CR reset circuit, then this could affect the reliability of PDI
programming. It is therefore essential that any reset circuit is physically isolated from the XMEGA
RESET pin during the PDI programming process.

There are known reliability problems when programming XMEGA devices using long (>10cm) ISP
cables. The reliability problems are due to noise / skew on the PDI_CLOCK signal line. The solution is
to use a ‘Clock Buffer’ circuit at the target end of the long ISP cable to clean up the clock.

In-System Debugging (note 4)
The Atmel JTAG-ICE MK2 debugger supports debugging of XMEGA AVR microcontrollers via both
the PDI and JTAG interface.

Boundary Scan Testing (note 5)
All XMEGA AVR devices which feature a JTAG port are capable of being tested in-circuit using the so
called JTAG’ Boundary Scan Testing’ technique. This technique is not supported by Atmel or
Equinox. It should be available on request from any good Boundary Scan Tester company.

Multiple XMEGA AVR programming on same Target Board (note 6)
It is possible to program multiple XMEGA AVR devices on the same Target Board using a single
JTAG programming interface by connecting the XMEGA devices in a so called ‘JTAG Chain’. This
mode will be supported by Equinox in the future.

It is not possible to connect the PDI ports of multiple XMEGA AVR devices together. Each device
would require its own dedicated PDI programmer.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

15

Programming pins required (note 6)
The PDI interface only uses two pins on XMEGA device. The PDI_CLK pin is actually the XMEGA
RESET pin, so this pin would not be used for user I/O anyway. The PDI_DATA pin is a dedicated pin
only used for PDI so there are no user I/O pins wasted by using the PDI interface. However, one
possible disadvantage of the PDI interface is that the PDI_CLK pin which is in fact the RESET pin
cannot have any RESET circuit on it as this would skew the clock signal and stop PDI working. The
RESET circuit on a PDI Target Board must therefore be carefully designed to allow PDI programming
during production programming but also to act as a normal reset circuit during normal operation.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

16

2.3 Overview of PDI Interface
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external
programming (ISP) and on-chip debugging (OCD) of Atmel XMEGA AVR microcontrollers. The
PDI interface supports high-speed programming of all on-chip Non-Volatile Memory (NVM) spaces
including the Flash, EEPROM, Configuration Fuses, Security Fuses plus the User Signature Row.

2.4 PDI – Physical Interface
The Program and Debug Interface (PDI) is a 2-wire interface which allows the XMEGA device to be
programmed using an external programmer. The pins required for programming via the PDI interface
are detailed in the table below.

PDI Signal
Name

Signal description Direction from
programmer

Pin name on XMEGA
device

PDI_CLK
(/RESET)

PDI Clock Signal
(This pin is also the XMEGA RESET
pin !!!)

Output RESET

PDI_DATA PDI Data Signal
(bi-directional)

Bi-directional TEST

GROUND (0V) Target / Programmer Signal GROUND Passive GND
Vcc Target / Programmer Vcc Supply Passive VCC

The connections between an ‘External programmer’ and the PDI Interface of an XMEGA device are
shown in the diagram below.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

17

2.5 Overview of JTAG Interface
The JTAG algorithm provides a method of performing high-speed programming of Atmel XMEGA
AVR microcontroller devices. The same JTAG port can also be used for on-chip debugging of code
using the Atmel JTAG-ICE Debugger.

Fig 2.5 – XMEGA AVR – JTAG Programming Interface connections

TCK

TDI

TDO

TMS

Vcc

Vss

RESET

PROG_RESET

PROG_TCK

PROG_TDI

PROG_TDO

PROG_TMS

Atmel
ATmega

Microcontroller

PROG_VCC

PROG_GND

Reset
Circuit

J
T
A
G

P
O
R
T

Programmer
Signal Name

Signal description Signal
direction
(from
Programmer)

Connect to
AVR
Microcontroller
Pin

Signal direction
(from
Microcontroller)

PROG_TCK Test Clock Pin Output TCK Input
PROG_TDI Test Data Input Output TDI Input
PROG_TDO Test Data Output Input TDO Output
PROG_TMS Test Mode Select Output TMS Input
PROG_RESET RESET Output RESET Input

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

18

The advantages and disadvantages of the JTAG algorithm are detailed below.

Advantages

• The JTAG algorithm uses the same ‘JTAG Port’ as the Atmel JTAG-ICE Debugger. This
means that the same port can be used for both debugging during the development phase and
also programming during the production phase of the product.

• It is possible to use the JTAG port of the Target Microcontroller to perform in-circuit testing of
the microcontroller and surrounding circuitry. This testing is performed by shifting Test Data
through the JTAG port of the Target Microcontroller. A JTAG Test System is required to
perform this testing. It is not supported by any Equinox Programmer or the Atmel JTAG ICE.

• It is possible to daisy-chain multiple JTAG devices on the JTAG bus in a so-called ‘JTAG
Chain’ and then select to program a particular device in the chain.

Disadvantages

• Equinox do NOT currently offer support for the XMEGA JTAG algorithm.
• The JTAG algorithm is possibly marginally slower than the PDI algorithm.
• The JTAG Programming Interface uses 5 pins: TCK, TDI, TDO, TMS and RESET.
• The JTAG interface pins are all user I/O pins so the application will lose 4 I/O pins if JTAG is

used.
• Not all XMEGA AVR devices have a JTAG port – only the larger pin-count devices can be

programmed via JTAG!
• If the JTAG port is enabled on the XMEGA device, then the device will take more current than

if PDI programming only was used.
• The JTAG pins of the microcontroller are not designed for off-board use and should not be

shared with any other circuitry on Target Board. This means that the JTAG port pins must be
dedicated for programming / debugging.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

19

3.0 PDI Algorithm
3.1 Overview of PDI Interface
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external programming
and on-chip debugging of Atmel XMEGA AVR microcontrollers. The PDI interface supports high-
speed programming of all on-chip Non-Volatile Memory (NVM) spaces including the Flash, EEPROM,
Fuses, Lockbits plus the User Signature Row.

3.2 PDI – Physical Interface
The Program and Debug Interface (PDI) is a 2-wire interface which allows the XMEGA device to be
programmed using an external programmer. The pins required for programming via the PDI interface
are detailed in the table below.

PDI Signal
Name

Signal description Direction from
programmer

Pin name on XMEGA
device

PDI_CLK
(RESET)

PDI Clock Signal Output RESET

PDI_DATA PDI Data Signal
(bi-directional)

Bi-directional TEST

GROUND (0V) Target / Programmer Signal GROUND Passive GND
Vcc Target / Programmer Vcc Supply Passive VCC

The connections between an ‘External programmer’ and the PDI Interface of an XMEGA device are
shown in the diagram below.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

20

3.3 PDI – Clock Signal (XMEGA RESET pin)
The ‘PDI – Clock’ is a clock signal which is continuously generated by the programmer during PDI
programming. This clock is fed from the programmer into the PDI_CLK (RESET) pin of the target
XMEGA device. The clock signal must be a continuous waveform with a frequency >= 10 kHz,
otherwise the target XMEGA device will exit PDI programming mode.

Important notes:

• As the XMEGA RESET pin is being used as a high-speed clock pin during PDI programming /
debugging, it is therefore very important that this pin is free to oscillate without any external
capacitive or resistive loading.

• The use of any form of reset circuit which prevents the external programmer from driving a
clock into the RESET pin will probably cause the PDI programming to either be very unreliable
or to not work at all.

• As the PDI_CLK (RESET) pin of the target XMEGA device is used as the PDI CLOCK pin, the
RESET pin of the programmer must NOT be connected to this pin.

Recommendations:

• It is recommended that no other components are connected to the PDI_CLK (RESET) pin of
the target XMEGA device during PDI programming.

• The programmer must connect directly to the actual PDI_CLK (RESET) pin of the XMEGA
device.

• This can be achieved by using an ‘Option link’ or ‘0 ohm resistor’ on the PDI_CLK (RESET)
pin which allows any other circuitry to be disconnected from this pin during PDI programming.

• If a capacitor must be placed on the PDI_CLK (RESET) pin for EMC purposes, then use the
lowest value possible and isolate it from the actual PDI_CLK (RESET) pin by using e.g. a 10k
ohm resistor.

• The length of cable between the programmer and the XMEGA DUT should be 10cm or less. If
your application requires longer cables than 10cm, then it is recommended that the
PDI_CLOCK signal is buffered at the target end of the cable using the ‘Serial Clock Buffer
Module’.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

21

3.4 PDI – Data Signal
The PDI – Data is a bi-directional signal line which is used to transfer data between the programmer
and the target XMEGA device and vice-versa. This is a dedicated pin for PDI programmer and should
not be used for any other purposes except PDI. When PDI programming mode is first entered, the
programmer automatically becomes the ‘master’ on the PDI bus and drives the PDI_DATA (TEST)
signal line. As part of the PDI protocol, the programmer can then instruct the target XMEGA device to
transmit data back to the programmer. In order to achieve this, the programmer must reverse the
direction of the PDI_DATA signal so that the XMEGA device can then drive this line back to the
programmer. The automatic reversal of the data direction is handled by special high-speed driver
hardware on the external programmer.

Recommendations:

• It is recommended that no other components are connected to the PDI_DATA (TEST) pin.
• This pin must be dedicated for PDI data transfer.
• The length of cable between the programmer and the XMEGA DUT should be 10cm or less. If

your application requires longer cables than 10cm, then it is recommended that the
PDI_CLOCK signal is buffered at the target end of the cable using the ‘Serial Clock Buffer
Module’. The PDI_DATA signal cannot be buffered as it is a bi-directional signal.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

22

3.5 ISPnano Series 3 - Target ISP Port – PDI pin-out
The ‘Target ISP Connector’ port of the ‘ISPnano Series 3’ programmer features all the signals
required to implement In-System Programming (ISP) of a target XMEGA device using the ‘2-wire
PDI’ interface.

The illustration below shows the location of the ‘Target ISP Connector’ port on the rear panel of the
programmer.

‘Target ISP Connector’ port

The connector is a 16-pin bump-polarised IDC
connector with 0.1” pin spacing.

Pin 1 is the top right pin as shown in the diagram
opposite.

This connector also features the programmable “Target Vcc” and “Target Vpp” voltages plus a
switched “EXTERNAL Vcc” supply.

The pins on this connector which are used for the ‘PDI Interface’ are detailed in the table below.

Programmer
Signal name
(16-way IDC)

IDC
pin

Signal description Direction
from
programmer

Pin name on
XMEGA
device

TARGET_VCC 1+2 Target Vcc Supply Passive VCC

GROUND (0V) 5+6 Target / Programmer Signal GROUND Passive GND

PDI_CLOCK 7 PDI Clock Signal Output RESET

PDI_DATA_TXD 8 PDI Data Signal - TRANSMIT Output TEST

PDI_SYNC 9 PDI Synchronisation Signal Output TEST

PDI_DATA_RXD 13 PDI Data Signal - RECEIVE Input TEST

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

23

3.6 Single XMEGA device – PDI programming connections
The diagram below shows the connections required between the programmer and a Target Board for
programming a single XMEGA microcontroller using the PDI interface.

Vcc

Atmel
XMEGA AVR

Microcontroller

> 10 kHz

PDI_DATA (TEST)

PDI_DATA_TXD (8)

PDI_DATA_RXD (13)
(SPI - MISO / JTAG TDO)

PDI_CLK (RESET)PDI_CLOCK (7)

TARGET VCC (1+2)

GND

PROG_GND (5+6)

POWER GROUND
(STAR connected EARTH point)

Target Board (UUT)

SIGNAL GROUND (0V)

PDI_SYNC (9)
R1

Programmer
Target ISP Port

connector

TARGET VCC

PDI
BI-DIRECTIONAL

DATA

Programmer
Signal name
(16-way IDC)

IDC
pin

Signal description Direction
from
programmer

Pin name on
XMEGA
device

TARGET_VCC 1+2 Target Vcc Supply Passive VCC

GROUND (0V) 5+6 Target / Programmer Signal GROUND Passive GND

PDI_CLOCK 7 PDI Clock Signal Output RESET

PDI_DATA_TXD 8 PDI Data Signal - TRANSMIT Output TEST

PDI_SYNC 9 PDI Synchronisation Signal Output TEST

PDI_DATA_RXD 13 PDI Data Signal - RECEIVE Input TEST

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

24

Please note:
• Very important - The ISP cable length between the programmer and XMEGA DUT should be

no more than 10 cm long. If longer ISP cables are necessary because of the programming
fixture design then a ‘Serial Clock Buffer Module’ is required to clean up the clock at the
DUT end of the ISP cable.

• The PDI_SYNC signal (pin 9 on the Target ISP connector) should be connected to the
XMEGA TEST (PDI_DATA) pin via a resistor – R1. The value of R1 should be 470 ohms. This
pin is used to force the XMEGA device into PDI programming mode.

• The RESET line from the programmer must NOT be connected to the XMEGA device RESET
pin (unless you are using some sort of external reset circuit).

• A separate "SIGNAL GROUND" and "POWER GROUND" should be implemented so that
large fluctuations in the target 0V do not affect the PDI or SPI signals.

• The "SIGNAL GROUND" is connected between the programmer and the UUT 0V.
• The "POWER GROUND" is connected between the UUT 0V and the ‘STAR Connected

EARTH’ of the fixture. This should be the common EARTH point for the power supplies which
are powering the programmer(s) and the UUT(s).

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

25

3.7 Single XMEGA PDI + AVR SPI – programming connections
The diagram below shows the connections required between the programmer and the Target Board
for programming both an XMEGA microcontroller and a standard AVR microcontroller on the same
Target Board.

This schematic shows how to program the following devices using a single programmer:

• Atmel XMEGA AVR microcontroller – PDI programming interface
• Atmel standard AVR microcontroller – SPI programming interface

Vcc

Atmel
XMEGA AVR

Microcontroller

> 10 kHz

PDI_DATA (TEST)

PDI_DATA_TXD (8)

PDI_DATA_RXD (13)
(SPI - MISO / JTAG TDO)

PDI_CLK (RESET)PDI_CLOCK (7)

TARGET VCC (1+2)

GND

PROG_GND (5+6)

MISO

SCKPROG_SCK (12)

MOSI

GND

Vcc

RESET

PROG_MOSI (14)

PROG_RESET (16)

Atmel
Standard AVR
Microcontroller

(SPI Mode)

SIGNAL GROUND (0V)

PDI
BI-DIRECTIONAL

DATA

SIGNAL GROUND (0V)

TARGET VCC

Programmer
Target ISP Port

connector

PDI_SYNC (9)
R1

POWER GROUND
(STAR connected EARTH point)

Target Board (UUT)

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

26

Programmer
Signal name
(16-way IDC)

IDC
pin

Signal description Direction
from
programmer

Pin name on
target device

TARGET_VCC 1+2 Target Vcc Supply Passive VCC

GROUND (0V) 5+6
Target / Programmer Signal
GROUND

Passive GND

PDI_CLOCK 7 PDI Clock Output XMEGA - RESET

PDI_DATA_TXD 8 PDI Data Signal - TRANSMIT Output XMEGA - TEST

PDI_SYNC 9 PDI Synchronisation Signal Output TEST

PROG_SCK 12 SPI – SCK Clock Output AVR - SCK

PDI_DATA_RXD
PROG_MISO 13

PDI Data Signal – RECEIVE
SPI – MISO

Input XMEGA- TEST

PROG_MOSI 14 SPI – MOSI signal Output AVR - MOSI

PROG_RESET 16
Programmer RESET – AVR SPI
device

Output AVR - RESET

Please note:

• Very important - The ISP cable length between the programmer and XMEGA DUT should be
no more than 10 cm long. If longer ISP cables are necessary because of the programming
fixture design then a ‘Clock Buffer’ circuit is required to clean up the clock at the DUT end of
the ISP cable.

• The PDI_SYNC signal (pin 9 on the Target ISP connector) should be connected to the
XMEGA TEST (PDI_DATA) pin via a resistor – R1. The value of R1 should be 470 ohms. This
pin is used to force the XMEGA device into PDI programming mode.

• It is also recommended that a resistor R2 (value 470 ohms) is inserted in the MISO line to
protect the programmer against a clash of both the target device and programmer drive this
signal by mistake at the same time.

• There is one shared programmer signal line between the "SPI" and "PDI" port. The MISO line
is shared with the ‘PDI_DATA_RXD’ pin so this pin must be routed to both devices.

• When programming in PDI mode, it is important to keep the "AVR SPI" micro in reset (RESET
pin held LOW) so that the AVR tri-states all its SPI lines allowing the MISO pin to be used as
the ‘PDI_DATA_RXD’ pin. This can be done by setting the RESET pin to ‘LAL’ in the pre-
programming state machine.

• The RESET line from the programmer must NOT be connected to the XMEGA device RESET
pin (unless you are using some sort of external reset circuit).

• A separate "SIGNAL GROUND" and "POWER GROUND" should be implemented so that
large fluctuations in the target 0V do not affect the PDI or SPI signals.

• The "SIGNAL GROUND" is connected between the programmer and the UUT 0V.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

27

• The "POWER GROUND" is connected between the UUT 0V and the ‘STAR Connected
EARTH’ of the fixture. This should be the common EARTH point for the power supplies which
are powering the programmer(s) and the UUT(s).

3.8 XMEGA PDI – ISP cable length recommendations
The ISP cable length between the programmer and XMEGA DUT should be no more than 10 cm
long. There is a known issue with all newer versions of XMEGA devices with 2010 or later date code
which makes these devices susceptible to noise / skew on the PDI_CLOCK pin. This problem can
render PDI programming non-functional if long ISP cables are used.

Recommendation:
If longer ISP cables (>10 cm) are necessary because of the programming fixture design then a
remote ‘Serial Clock Buffer’ module is required to clean up the PDI_CLOCK signal at the DUT end
of the ISP cable. See appendix 5 for further information about the ‘Serial Clock Buffer Module’.

3.9 Signal / Power GROUND (0V) connections
It is very important that both the programmer and Target System (UUT) are earthed correctly.
Incorrect grounding can lead to current flowing in the 0V signal back to the PC which could cause
ESD damage to either the programmer or the UUT. The ISPnano programmer features a ‘Signal
GROUND’ which is a specially filtered (cleaned) 0V signal which is used only for the programming
signals. The UUT should then use its own dedicated ‘Power GROUND’ as this will be much noisier
the programmer 0V.

Signal GROUND (0V)
The ‘Signal GROUND’ is the 0V to which the programming signals (PDI, SPI, JTAG etc) are
referenced to. This is a specially filtered 0V signal line which is used only for the programming
signals. The ‘Signal GROUND’ should be connected from the GROUND pins on the ‘Target ISP Port’
connector directly to the main GROUND on the UUT. The minimum cable length should be used for
this connection.

Power GROUND (0V)
The ‘Power GROUND’ is the 0V to which the Target Board (UUT) uses as its 0V reference. The
‘Power GROUND’ should be connected from the main GROUND (0V) point on the UUT to the ‘Star
connected GROUND of the overall programming fixture. This is usually the point where all 0V
GROUND connections are made for the power supplies in the fixture.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

28

3.10 Enabling PDI programming mode
The PDI port must be enabled before it can be used. The external programmer must first force the
PDI_DATA (TEST) line high for a period longer than the equivalent external reset minimum pulse
width (refer to device data sheet for external reset pulse width data). This will disable the RESET
functionality of the RESET pin, if not already disabled by the fuse settings. This can be achieved by
making the correct settings in the ‘Pre-programming statemachine’ in the EQTools programming
project.

The PDI_CLK (RESET) line must then be kept high for 16 PDI_CLK cycles (16 positive edges
detected). The first PDI_CLK cycle must start no later than 100uS after the RESET functionality of the
Reset pin was disabled. If this does not occur in time the RESET functionality of the Reset pin is
automatically enabled again and the enabling procedure must start over again.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

29

4.0 Creating an EDS Development Project
4.1 Overview
This section describes how to create a ‘Programming Project’ for an Atmel XMEGA AVR
microcontroller using the ‘PDI – Serial Programming Algorithm’. If you have used the Atmel ‘AVR
Studio’ software to develop the firmware for your application, it may then be necessary to convert the
‘Fuses’ and ‘Lock Bits’ to the correct format for inclusion in your EQTools project – please see
section 5 for further details.

4.2 Information required to create an XMEGA PDI Project
The following information about the Target System is required in order to create an AVR SPI
Programming Project:

Information / data required Example
1 XMEGA AVR Device part number ATxmega128A1
2 PDI connections / connector on Target board Atmel 6-way PDI connector
3 PDI Programming configuration i. Single XMEGA device

or
ii. XMEGA device + a secondary SPI or
JTAG microcontroller

4 Target System Vcc voltage e.g. 3.3V
5 Target System maximum current consumption e.g. 100mA
6 FLASH area ‘Program File’ Binary (*.bin) or Intel Hex (*.hex)
7 EEPROM area ‘Data File’ Binary (*.bin) or Intel Hex (*.hex)
8 Configuration Fuse values

These fuse values describe how the
‘Configuration Fuses’ in the XMEGA AVR
device are to be programmed.

i. Boolean fuse values:
e.g. RSTDISBL=0, CKSEL=1, CKSEL2=0
etc
ii. Fuse Hex values from ‘AVR Studio’
e.g. 0x22 0x45 0x34

9 Reset circuit parameters Make sure any reset circuit is completely
isolated from the XMEGA RESET pin
during programming.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

30

4.3 Launching the EDS Wizard
• Click the <New> icon on the top icon bar

• Select <Development Project> icon

 The EDS (Development) Wizard will launch

• Click <Next>  the <Programmer and Project Type> screen is displayed.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

31

4.4 Selecting the attached programmer
This screen allows you to select the attached programmer and also to set up the correct ‘Project
Type’ for your project.

• Select your programmer from the drop-down list
or
• Click the <Get Info> button if your programmer is attached and powered on
 This will automatically select the attached programmer.

• Set the ‘Project Type’ to ‘Standalone – keypad control’.

This is correct for most applications. You can change this setting at a later stage if required.
• Click <Next>  the <Select Target Device> screen will be displayed.

4.5 Selecting the target XMEGA device
This screen allows you to select the target XMEGA device to program.

• Expand the ‘Atmel’ tree, followed by the ‘Microcontroller’ tree, followed by the ‘ATxmega
(PDI)’ tree.

 A list of all the supported Atmel XMEGA PDI devices is displayed…..

• Select the required device e.g. ATxmega128A1 and then click the <OK> button.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

32

 The ‘Target Device’ screen is now displayed…

• Click <Next>  the <Target Oscillator Settings> screen is be displayed.

4.6 Selecting the XMEGA oscillator settings
This screen allows you to select the target XMEGA oscillator settings.

• Enter the frequency of the oscillator connected to the XMEGA device in the ‘External
Oscillator Frequency’ field.

• Do not change the ‘Programmer OP4 Clock’ as this is not required for XMEGA programming.
• Click <Next>  the <Target Power Supply> screen is displayed.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

33

4.7 Setting up the Target Power Supply
This screen allows you to set up how the programmer powers the Target System.

For most XMEGA applications, the programmer should power the ‘Target System’ at e.g. 2.7 – 3.3V

To power the Target System from the programmer:

• Set the ‘Programmer controlled Target Power Supply’ to ‘ON’
• Set the ‘Target Voltage’ to voltage at which the XMEGA device should be powered on your

Target System.
• Click <Next>  the <Erase options> screen is displayed.

4.8 Setting up the XMEGA ‘Erase Options’
This screen allows you to set up how programmer handles the erasing of an XMEGA device.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

34

• By default, the programmer will perform a ‘Chip Erase’ operation which will erase all the
individual FLASH sectors (Application table, Boot Section) and also the EEPROM.

• For now, leave the settings as default. The ‘Erase options’ are covered in more detail later on
this application note.

• Click <Next>  the <FLASH Area Programming options> screen is displayed.

4.9 Setting up the XMEGA ‘FLASH Programming’
This screen allows you to set up how to program the FLASH area(s) of the XMEGA device.

To load a file for programming into the FLASH area…

• Click the <Browse> button
• Select the required input file e.g. *.bin, *.hex, *.SREC
 The start and end address of the input file will be displayed.
 The ‘Operation’ is automatically set to ‘Program/Verify’ which means the programmer will
program each page and then verify each page of FLASH.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

35

4.10 Setting up the XMEGA ‘EEPROM Programming’
This screen allows you to set up how to program the EEPROM area(s) of the XMEGA device.

To load a file for programming into the EEPROM area…

• Click the <Browse> button
• Select the required input file e.g. *.bin, *.hex, *.SREC
 The start and end address of the input file will be displayed.
 The ‘Operation’ is automatically set to ‘Program/Verify’ which means the programmer will
program each page and then verify each page of EEPROM.

• Click <Next>  the <Cogratulations > screen is displayed.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

36

4.11 Saving the EDS setup file
When you reach the ‘Congratulations’ screen, you can now save this EDS project file to disk.

• Click the <Test> button
• Save the project with a sensible name e.g. ATxmega128A1.PPM
 Your newly created EDS project will automatically start in a new EDS session.

4.12 Testing an EDS programming Project
Once an EDS programming project has been created, it can be tested by loading it into EDS.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

37

4.13 Checking the Device Signature (ID) of a target device
The best way to check that the programmer can communicate with an attached XMEGA device is to
try to read back / check the ‘Device Signature’.

Instructions:

• Select the ‘Target Device’ tab
• Click the <Check ID> button
 If the programmer manages to enter programming mode then it should report back the correct
‘Device Signature’ for the selected XMEGA device.

If the programmer does not manage to enter programming mode, then EDS will report one of the
following errors:

• Error 40 – Cannot enter programming mode
• Incorrect Device Signature – Read 0x??????, expected 0xyyyyyy

Please refer to section 4.14 to debug these error conditions.

4.14 Cannot Enter Programming Mode error
If the programmer cannot communicate with the target XMEGA device, then EDS will report ‘Cannot
enter programming mode’.

If you receive this error, please check the following:

1. The PDI programming signal connections between the programmer and the Target System are
correct.

2. Does the XMEGA RESET pin have any other components connected to it?

• If there is a capacitor on this pin, then the clock signal from the programmer may be skewed
causing the device to fail to enter PDI programming mode.

• Try removing this capacitor and then attempt to ‘Check ID’ again.

3. How long are the PDI_CLOCK and PDI_DATA signal wires?

• It is recommended that these signal lines be kept as short as possible e.g. 10 cm or less.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

38

• Try reducing the length of the connecting cables.

4. Is your project set up to power the Target System?

• Check the power supply settings on the ‘Target Power Supply’ settings of your project.

5. Is the correct voltage applied to the XMEGA Vcc pin?

• Measure the actual voltage on the Vcc pin of the target XMEGA device using a DVM (volt
meter). Is it correct?

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

39

Appendix 1 – CONMOD Module + XMEGA PDI
1.0 Overview
This appendix describes how to use the ‘ISPnano CONMOD Module’ to connect an
ISPnano Series III programmer to an “Atmel XMEGA AVR” device using the 2-wire PDI interface.
The CONMOD module features all the required circuitry to support programming of an XMEGA
microcontroller via the PDI interface. The programmer connects to the 16-way IDC port labelled (3)
and the XEMGA PDI device connects to the 6-way IDC connector labelled (1) in the picture below.

Please note:

• The “Atmel PDI / I2C” 6-way IDC connector – marked (1) in the above picture has the same
pin-out as the standard ‘PDI connector’ found on the Atmel STK600 kit.

• All relevant connections for PDI are already made on the CONMOD board so there is no need
to add any other connections to get PDI to work.

Instructions

• Referring to the annotated picture above
• Plug the 16-way IDC cable supplied with the programmer between the programmer ‘Target

ISP Port’ (16-way IDC connector) and the CONMOD Module 16-way header (J7) – see arrow
(3).

• The PDI port is the 6-way IDC connector labelled ‘Atmel PDI I2C’ – see arrow (1)
• Set up the ‘Target Vcc Select’ jumper so that the programmer powers the Target Board – see

red box marked (2) in the picture.

1 2

3

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

40

Appendix 2 – ISPnano-QC1 Quick Connect
Module
1.0 Overview
This appendix describes the ‘ISPnano-QC1’ Quick Connect Module. This module features all the
required circuitry required to implement XMEGA AVR programming via the 2-wire PDI programming
interface. The module plugs into the 16-way ‘Target ISP Port’ on the ‘ISPnano Series 3’ or
‘ISPnano Series 3 ATE’ programmer. It provides so-called ‘Quick connect’ connections allowing
both an XMEGA PDI Target System and either a JTAG or SPI Target System to be connected to the
programmer at the same time.

Features

• Plugs into the 16-way ‘Target ISP Port’ on the ‘ISPnano Series 3’, ‘ISPnano Series 3 ATE
or ‘ISPnano Series 4’ programmers.

• Features all circuitry required for programming an Atmel XMEGA AVR microcontroller via the
XMEGA PDI interface

• Allows an second device to be connected to the same programmer via either the JTAG or SPI
interface

• All Target I/O signals are available via Quick-connect connectors
• External-Vcc in-line fuse
• ‘Target Vcc’ LED
• ‘External Vcc’ LED

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

41

1.1 Quick-Connect connector pin-out
The pin-out of the Quick Connect connectors is detailed in the table below.

QC
pin

QC
Signal
Name

Signal description Direction
from
programmer

Pin name on
target device

1 VCC Target Vcc Supply Passive VCC

2 EXT EXTERNAL switched Target Vcc Supply Passive See note 1

3 GND Target / Programmer Signal GROUND Passive GND

4 CLK XMEGA PDI Clock Output XMEGA - RESET

5 DATA XMEGA PDI Data Output XMEGA - TEST

6
I/O5 Spare I/O

Input /
Output

See note 2

7 I/O4 JTAG - TMS Output JTAG - TMS

8
I/O3 • SPI – SCK

• JTAG - TCK
Output

• SPI – SCK
• JTAG - TCK

9
I/O2 • SPI – MISO

• JTAG - TDO
Input

• SPI – MISO
• JTAG - TDO

10
I/O1 • SPI – MOSI

• JTAG - TDI
Output

• SPI – MOSI
• JTAG - TDI

11 RST RESET Output See note 3

12 VPP VPP Voltage PASSIVE See note 4

Please note:

• The signal names printed on the ’ISPnano-QC1’ Quick Connect Module are shown in the ‘QC
Signal Name’ column in the table.

• The XMEGA ‘PDI Clock’ and ‘PDI Data’ signals are marked as ‘CLK’ and ‘DATA’
respectively and should be connected to the target XMEGA RESET pin and TEST pin

Note 1
The ‘EXTERNAL switched Target Vcc Supply’ is an external voltage applied to the ‘DC-EXT’ pin of
the programmer which can be switched to the Target System. It is usually used to switch a voltage to
the input of a voltage regulator circuit on the Target System. If you are not using this functionality,
then do not connect this pin.

Note 2
This is a spare I/O line which is not used for either the SPI or JTAG algorithms.

Note 3
The RESET pin of the programmer should NOT be connected to the target XMEGA AVR RESET pin
as XMEGAs use the RESET pin as the CLOCK pin.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

42

If you are planning to connect an SPI or JTAG device to the programmers as well as an XMEGA PDI
device, then the RESET pin of the programmer should connect to the RESET pin of the SPI or JTAG
device.

Note 4
The VPP pin outputs a programmable voltage from 5.0 to 13.5V which is used to place certain
devices eg. ATtiny microcontrollers into ‘High-voltage programming mode’. This pin should not be
connected if you are programming any other devices.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

43

Appendix 3 – Using ConsoleEDS to program
XMEGA PDI devices
1.0 Overview
This appendix describes how to use the ConsoleEDS utility to program Atmel XMEGA
microcontrollers via the PDI programming interface. It is possible to use ConsoleEDS to program the
FLASH, EEPROM, User Signature Row, Configuration Fuses and Security Fuses of an XMEGA
device using simple command strings executed via the command line.

Please note:
This section provides specific instructions of how to use ConsoleEDS to program an XMEGA device.
For further information about how to use the ConsoleEDS application in general, please refer to
Application Note AN111.

1.1 Explanation of ConsoleEDS ‘Base Projects’
Most ConsoleEDS commands require that a ‘Base Project’ is created for each device to the
programmed. The ‘Base Project’ is used by ConsoleEDS to define the following parameters about
the target device / target system:

• Target Device e.g. ATxmega128A1
• Target Programming Interface e.g. PDI
• Target Vcc Voltage e.g. +3.3V
• Target Power Supply characteristics e.g. current
• Target Programming speed e.g. 415 kBaud
• Device Signature / Device ID

The ‘Base Project’ is declared on the ConsoleEDS command line as follows:
ConsoleEDS BaseProject.prj /FLASHWRITE=FlashData.hex

1.2 Setting up a ConsoleEDS ‘Base Project’
The simplest way to set up a ConsoleEDS ‘Base Project’ is to use the EDS ‘Development Wizard’.

Here is an overview of how to set up a ‘Base Project’:

• Launch the EDS Development Wizard
• Select the required device eg. ATxmega128A1
• Make sure the ‘Erase task’ is enabled in the project and all ‘Erase options’ are enabled.
• Make sure the ‘Fuse task’ is enabled in the project. It doesn’t matter what fuse values are

selected, only that the ‘Fuse task’ is enabled.
• Make sure the ‘Security task’ is enabled in the project. It doesn’t matter what fuse values are

selected, only that the ‘Security task’ is enabled.
• You should not select any FLASH file in the project.
• Compile the project to make a *.prj project eg. ATxmega128A1.PRJ

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

44

• You have now created a ‘Base Project’.

1.3 Reading the ‘Device Signature / ID’
It is possible to read the ‘Device Signature’ from the target device using the /READSIG command.
This command allows ConsoleEDS to check that the correct device is connected to the programmer
and that the device will enter programming mode OK.

Typical command useage:
ConsoleEDS ATxmega128A1.PRJ /READSIG

Typical response:
Console EDS - Signature read back: 0x1E974C

1.4 Erasing the FLASH and EEPROM
The XMEGA devices feature FLASH technology where each byte of FLASH can be re-programmed
but only if the entire FLASH has been erased first. The programmer can program any bit in the
FLASH from a ‘1’ to a ‘0’ but cannot program a ‘0’s back to a 1. This means that the programmer must
send the ‘Chip Erase’ command to erase all FLASH locations back to 0xFF BEFORE any new data
can be programmed into the FLASH area.

Typical command useage:
ConsoleEDS ATxmega128A1.PRJ /ERASE

Typical response:
Console EDS - Erasing target
Console EDS - TARGET_ERASE

Please note:

i. The /ERASE command does not receive any feedback from the target device to tell it whether the
erase operation worked or not. It is therefore up to the next commands in the sequence to handle any
errors if the erase did not work.

ii. The ‘Erase task’ must be enabled in the ‘Base Project’ otherwise the erase operation will fail.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

45

1.5 Programming the FLASH using the /FLASHWRITE command
The /FLASHWRITE command is used to program data from a file on the PC hard disk to the FLASH
area of the target device. It is possible to program any address range from a single byte to the entire
FLASH area of the device.

Typical example:
ConsoleEDS ATxmega128A1.PRJ /ERASE /FLASHWRITE=FLASH_DATA.HEX

This example will erase the entire FLASH area first and then program the data contained in the file
FLASH_DATA.HEX into the FLASH area of the device.

i. Supported file types
EQTools supports loading of the following file types:

• *.BIN – Binary file
• *.HEX – Intel Hex file
• *.SREC – Motorola S-Record file

ii. ERASE the FLASH before programming
The FLASH technology used on Atmel XMEGA devices only supports a ‘Chip Erase’ command
which erases the entire FLASH area. The address range of the FLASH to be programmed must be
erased to 0xFF BEFORE programming the file otherwise the programming operation will fail. This can
be achieved by using the /ERASE command.

Typical example:
ConsoleEDS ATxmega128A1.PRJ /ERASE
 This will erase the entire FLASH area.

1.6 Programming the ‘User Signature Row’
The /FLASHWRITE command is used to program data from a file on the PC hard disk into the ‘User
Signature Row’ area of the target device.

Typical example:
ConsoleEDS ATxmega128A1.PRJ /ERASE /FLASHWRITE=Signature_Row_Data.HEX
/OFFSET=0x0E0400

This example will erase the entire FLASH area first and then program the data contained in the
Signature_Row_Data.HEX file into the FLASH area of the device.

i. FLASH offset start address
The ‘User Signature Row’ of an XMEGA device does not start at address 0x00000.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

46

It actually starts at 0x0E0400 (see XMEGA memory map) so it is necessary to use the
/OFFSET=0x0E0400 command to program this special area of the FLASH using ConsoleEDS.

If the ‘User Signature Row’ area to be programmed is already erased to 0xFF:
ConsoleEDS ATxmega128A1.PRJ /FLASHWRITE=Signature_Row_Data.HEX
/OFFSET=0x0E0400

1.7 Programming the Fuses using the /FUSEWRITE command
The simplest method of programming the fuses of an XMEGA devices is to use the /FUSEWRITE
command. This command allows the ‘hex value’ of the fuses eg. 0xFF to be programmed directly into
the ‘Fuse array’ of the target device.

Typical example:
ConsoleEDS ATxmega128A1.PRJ PRJ /FUSEWRITE=0x00,0x00,0xFF,0xFF,0xDF
/RESETAFTERFUSEWRITE

The ‘hex value’ of the fuses can be found from any one of the following sources:

• ‘AVR Studio’ project or screenshot
• Atmel ELF File
• Equinox – EQTools Project file

Please note:
The /RESETAFTERFUSEWRITE command is required to force the device in and out of PDI
programming mode between the ‘Fuse Program’ and ‘Fuse verify’ operations. This step is required
to get around the ‘Fuse verify’ problem with all XMEGA devices – see Appendix 4 for further details.

1.8 Reading the Fuses using the /FUSEREAD command
The hex value of the fuses of an XMEGA device can be read back using the /FUSEREAD command.
This command will return the ‘hex value’ of the fuses eg. 0xFF.

Typical example:
ConsoleEDS ATxmega128A1.PRJ /FUSEREAD
Console EDS - MISP_FUSE_READ
Console EDS - Fuses Read: 0xFF
Console EDS - FINISH

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

47

1.9 Programming the ‘Security Fuses’ using the
/SECURITYWRITE command
The simplest method of programming the ‘Security fuses’ (Lock bits) of an XMEGA devices is to use
the /SECURITYWRITE command. This command allows the ‘hex value’ of the ‘Security fuses’ eg.
0xFE to be programmed directly into the ‘Security Fuse array’ of the target device.

Typical example:
ConsoleEDS ATxmega128A1.PRJ /SECURITYWRITE=0xFE
Console EDS - MISP_LOCK_WRITE
Console EDS - Security Fuses Written: 0xFE
Console EDS - Reading security fuses
Console EDS - MISP_LOCK_READ
Console EDS - Security Fuses Read: 0xFE

The ‘hex value’ of the ‘Security fuses’ can be found from any one of the following sources:

• ‘AVR Studio’ project or screenshot
• Atmel ELF File
• Equinox – EQTools Project file

1.10 Reading the ‘Security Fuses’ using the /SECURITYREAD
command
The ‘hex value’ of the ‘Security fuses’ of an XMEGA device can be read back using the
/SECURITYREAD command. This command will return the ‘hex value’ of the ‘Security fuses’ eg.
0xFF.

Typical example:
ConsoleEDS ATxmega128A1.PRJ /SECURITYREAD
Console EDS - Reading security fuses
Console EDS - MISP_LOCK_READ
Console EDS - Security Fuses Read: 0xFF

1.11 Executing a ‘Standalone Programming Project’
The fastest method of programming an ATtiny device will always be to use a ‘Standalone
programming project’ stored inside the programmer memory. This is also a very simple and neat
way of programming in a production environment as a ‘Standalone programming project’ performs
all the required programming actions in a single pre-compiled project.

Typical example:
ConsoleEDS /AUTOPROGRAM=PROJECTNAME

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

48

This command will execute the ‘Standalone programming project’ called ‘PROJECTNAME’ which
is stored inside the programmer memory. This project must have already been pre-configured and
uploaded to the programmer BEFORE executing the /AUTOPROGRAM command.

A ‘Standalone programming project’ can perform all or some of the actions below:

• Power up the UUT
• Enter programming mode
• Validate the ‘Device Signature / ID’
• Erase the ‘Lock Bits’ and then the entire FLASH area
• Program the FLASH area
• Program the ‘Configuration fuses’
• Program the ‘Security fuses’ (Lock Bits)
• Power down the UUT

Why use a ‘Standalone programming project’ ?
The ‘Standalone programming project’ will be much faster at programming large areas of FLASH
compared to programming the same data using the /FLASHWRITE command. This is because in
standalone mode, the data is stored locally on the programmer so the data retrieval time is much
faster than transferring it from the PC.

1.12 Mixing a ‘Standalone project’ with individual programming
commands
It is possible to combine multiple ConsoleEDS commands in a single session to create quite complex
programming sequences. In the example below, a ‘Standalone programming project’ stored inside
the programmer memory is used to program the ‘main firmware’ into the FLASH at high speed. A
unique ‘serial number’ is then programmed from a file called SerialNumber.hex. Finally the fuses
are programmed and the device is then locked.

Typical example:
ConsoleEDS ATxmega128A1.PRJ /AUTOPROGRAM=MAINPROG
/FLASHWRITE=SerialNumber.HEX FUSEWRITE=0x00,0x00,0xFF,0xFF,0xDF
/SECURITYWRITE=0xFE

This single ConsoleEDS command line session will perform the following programming actions:

• Execute the ‘Standalone programming project’ - MAINPROG
o Power up the UUT (if programmer controlling target power)
o Enter ‘low-voltage’ TPI programming mode
o Erase the ‘Lock Bits’ and then the entire FLASH area

• Programs the data contained in the file ‘SerialNumber’ into the FLASH area
• Programs the ‘Configuration fuses’
• Exits PDI programming mode
• Enter PDI programming mode
• Verifies the ‘Configuration fuses’

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

49

• Programs the ‘Security fuses’ (Lock Bits)
• Exits ‘low-voltage’ TPI programming mode
• Power down the UUT

1.13 Typical XMEGA programming sequence
It is possible to combine multiple ConsoleEDS commands in a single session to create quite complex
programming sequences. The example below enters programming mode, erases the FLASH area
and then programs some data contained in the file ‘FLASH_DATA.HEX’. Finally the ‘Configuration
fuses’ and ‘Security fuses’ are programmed.

Typical example:
ConsoleEDS ATxmega128A1.PRJ /ERASE /FLASHWRITE=FLASH_DATA.HEX
/FUSEWRITE=0x00,0x00,0xFF,0xFF,0xDF /SECURITYWRITE=0xFE

This single ConsoleEDS command line session will perform the following programming actions:

• Power up the UUT (if programmer controlling target power)
• Enter PDI programming mode
• Erase the ‘Lock Bits’ and then the entire FLASH area (depends on settings of the ‘Erase

options’)
• Programs the data contained in the file ‘FLASH_DATA.HEX’ into the FLASH area
• Programs the ‘Configuration fuses’
• Exits PDI programming mode
• Enter PDI programming mode
• Verifies the ‘Configuration fuses’
• Programs the ‘Security fuses’ (Lock Bits)
• Exits PDI programming mode
• Power down the UUT

The programmer will keep the target device in programming mode throughout the ConsoleEDS
session which can save a considerable amount of time as it can take 300 – 500ms exiting and re-
entering programming mode.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

50

Appendix 4 – XMEGA Fuse Verify problems

1.0 Problem description
When the value of certain ‘Configuration fuses’ in an XMEGA microcontroller are changed from a
‘1’ to a ‘0’ or a ‘0’ to ‘1’., the device will not read back the correct value of these fuses until the
programmer has exited ‘PDI programming mode’ and then re-entered programming mode. This is
an unfortunate feature of the XMEGA PDI programming mode which is beyond the control of Equinox
Technologies.

As the read back fuse values are incorrect, this will lead to a ‘Fuse Verify Error’ when the
programmer attempts to program the XMEGA fuses as the programmer writes the fuses and then
immediately reads them back and verifies that they are correct. The read back values will be the
previous values (i.e. the values before programming) not the newly programmed values so the fuse
verify operation will fail.

The fuses which will trigger this problem are as follows:

• RSTDISBL – RESET pin disable fuse
• JTAGEN – JTAG ENABLE fuse
• SUT0 – Start up time fuse
• SUT1 – Start up time fuse
• WDLOCK – Watchdog time lock fuse

Important notes:

• The ‘Fuse Verify Error’ problem is only triggered when the value of one of these fuses is
changed from a ‘1’ to a ‘0’ or a ‘0’ to ‘1’.

• If one of these fuses is programmed with the same value that it already contains then this
programming action will not trigger the problem.

1.1 Error numbers / message for XMEGA Fuse Verify problem
The ‘Fuse Verify Error’ can generate the following error codes / messages:

• Error 44 – Pre-Erase Fuse Verify Error (with firmware 6.17 or below)
• Error 45 – Post-Erase Fuse Verify Error (with firmware 6.18 or above)

The ‘Fuse Verify Error’ will affect all methods of programmer control including EDS, ConsoleEDS,
ASCII Control Protocol, keypad mode and using the hardware START signal or TTL control. The
‘Error number’ will be the same no matter which control method is used.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

51

1.2 Fix for this problem
This problem has been fixed in programmer firmware 6.29.

The programmer now always programs the fuses, exits PDI mode, re-runs the pre-programming
Statemachine, re-enters PDI mode and then verifies the fuses. This process is completely automatic
so no user intervention or changes to project settings should be required.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

52

Appendix 5 – PDI Clock Buffer module
1.0 Overview
There is a known issue with XMEGA device with date code 2010 or later where they appear to be
more susceptible to noise / clock skew on the PDI_CLOCK pin than earlier silicon versions. If long
cables (>10cm) are used to connect the programmer to the XMEGA DUT, then in certain
circumstances the programmer cannot physically enter PDI programming mode.

The only known solutions to this problem are as follows:

• Reduce the ISP cable length to <10cm or until the programmer can reliably enter PDI
programming mode.

or
• Use a ‘Clock Buffer’ circuit to buffer the PDI_CLOCK signal at the target (DUT) end of the

ISP cable.

1.2 XMEGA PDI Buffered ISP Cable
The solution to programming an XMEGA device over long cables is to buffer the PDI_CLOCK signal
at the target (DUT) end of the ISP cable. The illustration below shows the typical cabling
arrangements for the ‘Clock Buffer Module’ when used with an ISPnano programmer.

Please note:
It is possible to use cable lengths of up to 2.0 meters between the programmer and the ‘Clock Buffer
Module’ using the cabling arrangement detailed in the diagram above.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

53

1.3 XMEGA PDI Buffered ISP Cable - Features
The ‘Buffered ISP Cable’ features are as follows…

• Supports programming of Atmel XMEGA microcontrollers using ISP cable lengths of up to 2m.
• Simple to retrofit to any existing programming fixture.
• Buffers the PDI_CLOCK signal at target end of the ISP cable.
• Cross-talk between the PDI_CLOCK and PDI_DATA signals is minimised by running

additional GROUND wires between the clock and data signals.
• An analogue switch on the output of the PDI_CLOCK buffer is used to isolate the programmer

/ buffer circuit from the DUT when not in programming mode.
• The buffer circuitry can be powered from the programmer or the Target System (DUT).
• Comprehensive ESD protection of the PDI_CLOCK and PDI_DATA signals.
• Simple integration with existing programming projects – only one change is required to the

statemachine settings in order to control the analogue switch.

1.4 Recommended Clock Buffer module location
The ‘Clock Buffer module’ must be inserted as close as possible to the XMEGA DUT. The module
is designed so that it can be soldered directly to the bed-of-nails PDI_CLOCK probe pin in the fixture
thereby minimising the distance from the buffered clock output to the target XMEGA clock input.

The diagram below shows the recommended location of the ‘Clock Buffer module’ circuit inside a
programming fixture…

• The PDI CLOCK and PDI_DATA wiring between the ‘Clock Buffer module’ and fixture
probe-pins should be a maximum of e.g. 3 – 4 cm.

• The 10-way ISP cable between the ‘Clock Buffer module’ and the programmer can be up to
3 meters in length.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

54

1.5 Clock Buffer functional explanation
The diagram below shows the general operation of the ‘Clock Buffer module’ circuit…

Important features:

• The PDI_CLOCK signal from the programmer is buffered so that the clock edges are square
again at the output of the buffer.

• The output of the buffer is then fed through a low-on resistance analogue switch which allows
the PDI_CLOCK signal to be tri-stated under programmer control when not being used for
programming. This prevents the programmer from permanently driving the RESET pin of the
target XMEGA controller. i.e. the pin is only driven during programming.

• The PDI_CLOCK signal is enabled by the programmer using the spare programmer output –
OP5. The programmer must drive OP5 HIGH to enable the analogue switch output.

• The output of the analogue switch is protected by an ESD protection device to prevent
damage due to ESD or over-voltage.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

55

1.6 Clock Buffer Module – 10-way IDC pin-out
The 10-way IDC cable on the ‘Clock Buffer Module’ brings the PDI_CLOCK, PDI_DATA and
CLOCK_BUFFER_ENABLE signals from the programmer to the module. The simplest method to
bring these signals up from the programmer is to use a 10-way ID cable made to the required length.
However, it is also entirely possible to use separate wires to connect just the required signals from the
programmer to the ‘Clock Buffer Module’.

The pin-out of the 10-way male IDC connector on the ‘Clock Buffer Module’ is shown in the table
below.

10-
way
IDC
pin #

Signal name Signal description Direction
from
programmer

Pin name on
target device

1
PROG_PDI_DATA PDI Bi-directional DATA

signal
Passive PDI_DATA

2, 4,
6,8,10 GND Target / Programmer Signal

GROUND
Passive GND

3,9
VCC Target / Programmer VCC

supply
Passive VCC / VDD

5 CLOCK_BUFF_ENABLE Clock Buffer ENABLE signal Output No connect

7
PROG_PDI_CLK

XMEGA PDI Clock signal
from the programmer (not
buffered)

Output
XMEGA -
RESET

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

56

1.7 Clock Buffer Module – Outputs to the DUT
The outputs PDI_CLOCK_OUTPUT (buffered) and PDI_DATA (not buffered) of the ‘Clock Buffer
Module’ are brought out to two large pads on the module PCB.

As the purpose of the module is to buffer the PDI_CLOCK signal, it is very important that the module
is positioned as close as possible to the PDI_CLOCK test-pin on the DUT. The module has been
designed so that a typical fixture pogo-pin will fit through the ‘CLK-OP’ hole in PCB allowing the
module to be mounted directly to the target PDI_CLOCK pin. If it is not possible to fix the module
directly to the pogo-pin, then try to locate it within 2 – 3 cms of the pogo-pin and use a piece of wire to
connect between the module and the pogo-pin.

10-way IDC
pin #

Signal name Signal description Direction
from
module

Pin name on
target device

DATA / OP
PROG_PDI_DATA PDI Bi-directional DATA

signal
Passive PDI_DATA

CLK O/P
PDI_CLK_OUTPUT

XMEGA PDI Clock signal
(buffered)

Output
XMEGA -
RESET

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

57

1.8 Controlling the PDI Clock Buffered output
The output of the ‘Clock Buffer’ is gated via a low-impedance analogue switch to the DUT. This
allows the programmer to control when the PDI_CLOCK_OUTPUT signal is driving and or not.

The programmer controls the analogue switch using the control line CLOCK_BUFF_ENABLE on the
module which is on pin 5 of the 10-way IDC connector. The CLOCK_BUFF_ENABLE signal is pulled
low by default which disables the output drive.

The programmer uses the spare output O/P5 to control the CLOCK_BUFF_ENABLE signal.
It needs to drive output O/P5 HIGH during any programming operation in order to enable the
analogue switch which will then gate the programmer clock signal to the DUT.

The spare output O/P5 can be found on pin 6 of the 16-way IDC ‘Target ISP Port’ of any ISPnano
programmer.

To enable the output O/P5 during a programming operation, the pre-programming statemachine in
the programming project must be altered to say ‘LAH’ in the O/P5 column.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

58

Appendix 6 – XMEGA PDI Design guidelines
1.0 Overview
This section provides an overview of suggested ‘design guidelines’ which should be followed when
designing a target board which is to be programmed using the Atmel 2-wire PDI interface.

1.1 XMEGA RESET circuit

• The XMEGA RESET pin is used as the PDI_CLOCK pin during the production programming
process.

• The XMEGA RESET pin must therefore be completely isolated from any on-board ‘reset
circuit’ during programming. This includes isolating even simple C/R reset circuits as even a
small amount of capacitance can upset the PDI clock signal.

• A simple jumper link or solder blob link cam be used to isolate the XMEGA RESET pin during
the programming process.

!!! Warning !!!
Failure to isolate any reset circuit during the programming process will prevent PDI programming from
working properly.

1.2 XMEGA PDI - CLOCK signal line (RESET)

• The XMEGA PDI CLOCK signal (PDI_CLOCK) is a high-frequency signal line during the
programming process and should therefore be routed with care.

• High-frequency PCB design guidelines should be followed when routing this signal.
• The signal line length should be as short as possible.
• The PDI_CLOCK should not be routed near other high-frequency signals especially the

PDI_DATA signal. This is to minimise any chance of cross-talk between the PDI clock and
data lines.

1.3 XMEGA PDI - DATA signal line

• The XMEGA PDI DATA signal (PDI_DATA) is a high-frequency signal line during the
programming process and should therefore be routed with care.

• This signal carries high-speed bi-directional data between the programmer and the XMEGA
DUT.

• This is a dedicated signal line only for PDI data. There must be no other components on this
signal line.

• The PDI_DATA signal line should also be isolated from the PDI_CLOCK line to avoid any
cross-talk from the PDI clock signal. This could possibly be achieved by applying good high-
frequency PCB design rules, proper use of a ground plane and perhaps inserting a 0V track
between the PDI_DATA and PDI_CLOCK signals on the PCB.

Application Note 127 - In-System Programming (ISP) of the Atmel XMEGA AVR FLASH Microcontroller Family

59

1.4 PDI programming cable length
• There are known PDI programming issues with many XMEGA devices when attempting to use

long (>10 cm) ISP cables between the programmer and the XMEGA DUT.
• If longer ISP cables are necessary because of the programming fixture design then an

external ‘Clock Buffer’ circuit is required on the programming fixture to clean up the clock at
the DUT end of the ISP cable.

	Contents
	1.0 Introduction
	1.1 Overview of programmers supporting XMEGA PDI devices
	1.1.1 Portable ISP Programmers
	1.1.2 Single channel Production ISP Programmers
	1.1.3 Multiplexed sequential Production ISP Programmers
	1.1.4 Multi-channel GANG Production ISP Programming Systems

	1.2 XMEGA PDI – programmer cross reference guide
	1.3 XMEGA Device Support

	2.0 XMEGA Programming Interfaces
	2.1 Overview of XMEGA Programming Interfaces
	2.2 Comparison of XMEGA PDI and JTAG algorithms
	2.3 Overview of PDI Interface
	2.4 PDI – Physical Interface
	3.1 Overview of PDI Interface
	3.2 PDI – Physical Interface
	3.3 PDI – Clock Signal (XMEGA RESET pin)
	3.4 PDI – Data Signal
	3.5 ISPnano Series 3 - Target ISP Port – PDI pin-out
	3.6 Single XMEGA device – PDI programming connections
	3.7 Single XMEGA PDI + AVR SPI – programming connections
	3.8 XMEGA PDI – ISP cable length recommendations
	3.9 Signal / Power GROUND (0V) connections
	3.10 Enabling PDI programming mode

	Signal description
	4.0 Creating an EDS Development Project
	4.1 Overview
	4.2 Information required to create an XMEGA PDI Project
	4.3 Launching the EDS Wizard
	4.4 Selecting the attached programmer
	4.5 Selecting the target XMEGA device
	4.6 Selecting the XMEGA oscillator settings
	4.7 Setting up the Target Power Supply
	4.8 Setting up the XMEGA ‘Erase Options’
	4.9 Setting up the XMEGA ‘FLASH Programming’
	4.10 Setting up the XMEGA ‘EEPROM Programming’
	4.11 Saving the EDS setup file
	4.12 Testing an EDS programming Project
	4.13 Checking the Device Signature (ID) of a target device
	4.14 Cannot Enter Programming Mode error

	Appendix 1 – CONMOD Module + XMEGA PDI
	1.0 Overview

	Appendix 2 – ISPnano-QC1 Quick Connect Module
	1.0 Overview
	1.1 Quick-Connect connector pin-out

	Appendix 3 – Using ConsoleEDS to program XMEGA PDI devices
	1.0 Overview
	1.1 Explanation of ConsoleEDS ‘Base Projects’
	1.2 Setting up a ConsoleEDS ‘Base Project’
	1.3 Reading the ‘Device Signature / ID’
	1.4 Erasing the FLASH and EEPROM
	1.5 Programming the FLASH using the /FLASHWRITE command
	1.6 Programming the ‘User Signature Row’
	1.7 Programming the Fuses using the /FUSEWRITE command
	1.8 Reading the Fuses using the /FUSEREAD command
	1.9 Programming the ‘Security Fuses’ using the /SECURITYWRITE command
	1.10 Reading the ‘Security Fuses’ using the /SECURITYREAD command
	1.11 Executing a ‘Standalone Programming Project’
	1.12 Mixing a ‘Standalone project’ with individual programming commands
	1.13 Typical XMEGA programming sequence
	1.0 Problem description
	1.1 Error numbers / message for XMEGA Fuse Verify problem
	1.2 Fix for this problem

	Appendix 5 – PDI Clock Buffer module
	1.0 Overview
	1.2 XMEGA PDI Buffered ISP Cable
	1.3 XMEGA PDI Buffered ISP Cable - Features
	1.4 Recommended Clock Buffer module location
	 The PDI CLOCK and PDI_DATA wiring between the ‘Clock Buffer module’ and fixture probe-pins should be a maximum of e.g. 3 – 4 cm.
	1.5 Clock Buffer functional explanation
	1.6 Clock Buffer Module – 10-way IDC pin-out
	1.7 Clock Buffer Module – Outputs to the DUT
	1.8 Controlling the PDI Clock Buffered output

	Appendix 6 – XMEGA PDI Design guidelines
	1.0 Overview
	1.1 XMEGA RESET circuit
	1.2 XMEGA PDI - CLOCK signal line (RESET)
	1.3 XMEGA PDI - DATA signal line
	1.4 PDI programming cable length

