

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

1

Report No:

AN132
Title:

In-System Programming (ISP) of the Atmel
ATtiny AVR FLASH Microcontroller Family
using the TPI interface
Author: Date: Version Number:
John Marriott

24th October 2014 1.09

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The
information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be
changed without prior notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not
convey nor imply any license under patent or other industrial or intellectual property rights

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

2

Contents
1.0 Introduction ... 3

1.1 Programmers supporting ATtiny TPI programming... 3
1.2 Programmer firmware for ATtiny TPI support ... 4
1.3 ISPnano Series 3 - Equipment required for ATtiny TPI support .. 5
1.4 ATtiny – TPI - Device Support .. 6

2.0 ATtiny TPI Programming Interfaces ... 7
2.1 Overview of the ATtiny TPI Programming Interface .. 7
2.2 Low voltage / high voltage TPI programming .. 7
2.3 Connecting an ATtiny TPI device to an ISPnano programmer .. 9
2.4 TPICLK – Clock Signal ... 10
2.5 TPIDATA – Data Signal ... 11
2.6 RESET/VPP pin ... 11
2.7 ISPnano Series 3 / 4 - Target ISP Port – TPI pin-out .. 12
2.8 Signal / Power GROUND (0V) connections .. 13

3.0 Creating an EDS Development Project .. 14
3.1 Overview .. 14
3.2 Selecting a Development Project ... 14
3.3 Selecting ‘Programmer and Project Type’ .. 15
3.4 Selecting ‘Target Device’ .. 16
3.5 Selecting the ATtiny oscillator settings ... 17
4.7 Setting up the Target Power Supply ... 18
4.8 Setting up the ATtiny ‘Erase Options’ ... 19
4.9 Setting up the ATtiny ‘FLASH Programming’ .. 20

Appendix 1 – ISPnano-QC1 Quick Connect Module ... 22
1.0 Overview .. 22
1.1 Quick-Connect connector pin-out ... 23

Appendix 2 – Using ConsoleEDS to program ATtiny TPI devices ... 25
1.0 Overview .. 25
1.1 Explanation of ConsoleEDS ‘Base Projects’ ... 25
1.2 Creating ATtiny low-voltage and high-voltage base projects .. 25
1.3 Setting up a ConsoleEDS ‘Base Project’ .. 26
1.4 Reading the ‘Device Signature / ID’ .. 26
1.5 Erasing the FLASH and Fuses ... 27
1.6 Programming the FLASH using the /FLASHWRITE command ... 28
1.7 Programming the Fuses using the /FUSEWRITE command .. 29
1.8 Reading the Fuses using the /FUSEREAD command .. 29
1.9 Programming the ‘Security Fuses’ using the /SECURITYWRITE command 30
1.10 Reading the ‘Security Fuses’ using the /SECURITYREAD command 30
1.11 Executing a ‘Standalone Programming Project’ .. 31
1.12 Mixing a ‘Standalone project’ with individual programming commands 31
1.13 Typical ATtiny programming sequence .. 33
1.14 Disabling the ATtiny RESET pin ... 34
1.15 Resurrecting a device where the RESET pin is disabled .. 34

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

3

1.0 Introduction
This application note describes how to develop and implement In-System Programming (ISP) support
for the Atmel ATtiny AVR TPI microcontroller family using the ‘3-wire TPI’ programming interface.
The document details how to create a ‘Programming Project’ which will operate on any Equinox ISP
programmer. The document describes the physical connections required from the programmer to the
target Microcontroller and also details the different ISP Header Connector pin-outs which are currently
available.

1.1 Programmers supporting ATtiny TPI programming
Programming support for the Atmel ATtiny AVR TPI microcontroller family is currently only
available on the ‘ISPnano Series 3’ range of programmers.

The table below details the Equinox ISP programmers which are capable of supporting TPI
programming of Atmel ATtiny AVR microcontrollers.

 Programmer Programming

channels
Low-voltage

TPI algorithm
High-voltage TPI

algorithm

ISPnano Series 3 1
(network up to

32
programmers)

Yes
– available now

Yes
– available now

ISPnano Series 3 ATE 1
 (network up to

32
programmers)

Yes
– available now

Yes
– available now

ISPnano-MUX4
4-channel multiplexed
programming system

4 sequential
programming

channels

Yes
– available now

Yes
– available now

ISPnano-MUX8
8-channel multiplexed
programming system

8 sequential
programming

channels

Yes
– available

now

Yes
– available now

ISPjuno
Portable ISP
Programmer

1 Yes
– available
Q2 2013

Yes
– available
Q2 2013

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

4

Please note:
• The ‘ISPnano Series 3’ / ‘ISPnano Series 4 ATE’ programmer range supports uploading of

up to 64 independent ‘Standalone Programming Projects’.
• The ATtiny TPI programming interface cannot be supported on the Equinox FS2003, FS2009,

Epsilon5, PPM3-MK2 or PPM4-MK1 programmers as these programmers do not feature the
correct hardware to allow TPI to be implemented.

1.2 Programmer firmware for ATtiny TPI support
The minimum firmware version for programming Atmel ATtiny devices using the TPI interface is
detailed in the table below.

Programmer Minimum

Firmware
version

Comment

ISPnano Series 3 6.29 and above Fully tested and released

ISPnano Series 3 ATE 6.29 and above Fully tested and released

ISPnano Series 4 ATE 6.67 Fully tested and released

ISPjuno TBA No released yet

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

5

1.3 ISPnano Series 3 - Equipment required for ATtiny TPI support
The table below lists the equipment required to implement ‘Atmel ATtiny TPI’ programming on an
‘ISPnano Series 3’ or ‘ISPnano Series 4’ programmer.

Equipment Picture /

illustration
Comment

ISPnano Series 3 / 3 ATE /
Series 4 ATE programmer

• This is the actual programming module.

ISPnano-QC1 Quick Connect
Module

• This is a small connector module which
plugs into the 16-way IDC connector on
the ISPnano programmer.

• It features all the circuitry required for
ATtiny TPI programming.

• All TPI connections are brought out to
‘Quick Connect’ connectors.

ISPnano-UPG23

• ATtiny TPI – License Upgrade
• This is an ‘electronic programming

license’ which enables the programmer
to support programming of Atmel ATtiny
devices via the TPI interface.

Please note:
The ISPnano Series 3 programmers feature an on-board ‘TPI’ port for programming Atmel ATtiny
devices via the TPI interface. However, in order to use this port, a simple external circuit is required.
This circuit is included on the ‘ISPnano-QC1 - Quick Connect Module’ and also the CONMOD
module.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

6

1.4 ATtiny – TPI - Device Support
The Equinox ‘ISPnano Series 3’ programmer is capable of supporting any Atmel ATtiny AVR device
which supports the ‘3-wire Tiny Programming Interface (TPI)’ programming interface. The table
below details the devices which are currently supported.

Device On-chip

FLASH
Size (bytes)

FLASH Page
Size

(bytes)

Minimum
firmware
version

LV TPI
algorithm

HV TPI
algorithm

Tested
on

actual
device

ATtiny4 512 128 6.67 YES - -
ATtiny5 512 128 6.67 YES - -
ATtiny9 1024 128 6.67 YES - -
ATtiny10 1024 128 6.67 YES YES YES
ATtiny20 2048 128 6.67 YES - -
ATtiny40 4096 128 6.67 YES YES -

Please note:
Equinox will usually add any new ATtiny TPI device on request. The above list may therefore not be
up-to-date. Please refer to the latest ‘Device Support List’ for the devices which are currently
supported by the Equinox range of programmers.

This can be found as follows:

- as a Download available on the website:
Click on the ‘Downloads’ tab. Under ‘Download Type’ choose Device Support Lists /
Release notes then click Search.

- Browsing on the Device Support tab under each product.

- In the latest version of EQ-Tools:

Launch EQ-Tools and then select <Programmer> <Create a Device Support list>
All programmers and devices supported are listed in this document.
You will need the most recent EQ-Tools build version – please refer to the website for further
details.

Please note:

• Please see Application Note – AN112 for instructions on updating your programmer
firmware.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

7

2.0 ATtiny TPI Programming Interfaces
2.1 Overview of the ATtiny TPI Programming Interface
The devices in the Atmel ATtiny (TPI) AVR microcontroller family can only be programmed using
the 3-wire ‘Tiny Programming Interface (TPI)’ interface. The Tiny Programming Interface (TPI) is
an Atmel proprietary interface for external programming and on-chip debugging of selected Atmel
ATtiny AVR microcontrollers. The illustration below shows how the TPI interface is implemented
within an ATtiny AVR device.

The TPI interface is an ideal choice for these low pin-count microcontrollers as only two programming
pins and RESET are required to implement In-System Programming. The TPI interface supports
high-speed programming of all on-chip Non-Volatile Memory (NVM) spaces including the Flash,
Fuses and Lock bits.

2.2 Low voltage / high voltage TPI programming
An ATtiny device can normally be programmed at +5.0V using the so called ‘low voltage TPI’
programming algorithm. The device must be powered at +5.0V during programming otherwise the
programming operation will fail.

However, if the ‘RESET Disable Fuse (RSTDISBL)’ has been previously enabled (set to ‘0’), then the
target device will no longer respond to the programmer using the ‘low-voltage TPI’ programming
algorithm. To re-program an ATtiny device in this state, it is necessary to use the ‘high-voltage TPI’
programming algorithm which applies +12V to the RESET/VPP pin of the device.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

8

The table below compares the ‘low-voltage TPI’ and ‘high-voltage TPI’ programming algorithms:

Interface
Name

Interface
description

Number of
interface
signals

Vcc
Voltage

Vpp
Voltage

ATtiny pins required for
programming

LV TPI Low-voltage TPI
programming
interface

3-wire +5.0V Not
required

• TPI_CLK
• TPI_DATA
• RESET

HV TPI High-voltage TPI
programming
interface

3-wire +5.0V +12.0V • TPI_CLK
• TPI_DATA
• RESET/VPP

Important notes:

• The ‘Target Vcc Voltage’ must be set to +5.0V during programming otherwise programming
operations will fail. This voltage can be generated by the programmer or it can be supplied by
the Target System.

• The ‘Target Vpp Voltage’ is generated by the programmer and applied to the RESET/VPP
pin of the target device. The Target System (UUT) must be designed so that it can withstand
+12V on the RESET/VPP pin.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

9

2.3 Connecting an ATtiny TPI device to an ISPnano programmer
The diagram below shows the connections required between an ‘ISPnano Series 3’ or ‘ISPnano
Series 4’ programmer and a Target Board (UUT) for programming a single ATtiny microcontroller
using the TPI interface.

Vcc

Atmel
ATtiny TPI

microcontroller

> 10 kHz

TPIDATA

TPI_DATA_TXD (8)

TPI_DATA_RXD (13)
(SPI - MISO / JTAG TDO)

TPICLKTPI_CLOCK (7)

TARGET VCC (1+2)

GND

PROG_GND (5+6)

POWER GROUND
(STAR connected EARTH point)

Target Board (UUT)

SIGNAL GROUND (0V)

TPI_SYNC (9)
R1

Programmer
Target ISP Port

connector

TARGET VCC

TPI
BI-DIRECTIONAL

DATA
R2

RESET/VPPPROG_RESET (16)

PROG_VPP(15)

+5.0V

+12.0V

Please note:

• The above circuit is already implemented on both the ‘ISPnano CONMOD module’ and the
‘ISPnano Quick Connect module’ so it is recommended that one of these modules is used
for any production fixture.

• The TPI_SYNC signal (pin 9 on the Target ISP connector) should be connected to the ATtiny
TPIDATA pin via a resistor – R1. The value of R1 should be 470 ohms. This pin is used to
force the ATtiny device into TPI programming mode.

• The TPI_DATA_RXD pin should be connected to the ATtiny TPIDATA pin via a resistor – R2.
The value of R2 should be 470 ohms.

• The RESET line from the programmer should be connected to the ATtiny RESET/VPP pin
(unless you are using some sort of external reset circuit).

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

10

• If the ‘high-voltage TPI’ algorithm is to be used, then the ‘PROG_VPP’ pin must also be
connected to the ATtiny RESET/VPP pin. The Target System must be able to withstand
+12.0V applied to this pin!!!

• A separate "SIGNAL GROUND" and "POWER GROUND" should be implemented so that
large fluctuations in the target 0V do not affect the PDI or SPI signals.

• The "SIGNAL GROUND" is connected between the programmer and the UUT 0V.
• The "POWER GROUND" is connected between the UUT 0V and the ‘STAR Connected

EARTH’ of the fixture. This should be the common EARTH point for the power supplies which
are powering the programmer(s) and the UUT(s).

The pins required for programming via the TPI interface are detailed in the table below.

Programmer
Signal name
(16-way IDC)

IDC
pin

Signal description Direction
from
programmer

Pin name on
ATtiny device

TARGET_VCC 1+2 Target Vcc Supply Passive VCC

GROUND (0V) 5+6 Target / Programmer Signal GROUND Passive GND

TPI_CLOCK 7 TPI Clock Signal Output RESET

TPI_DATA_TXD 8 TPI Data Signal - TRANSMIT Output TEST

TPI_SYNC 9 TPI Synchronisation Signal Output TPIDATA

TPI_DATA_RXD 13 TPI Data Signal - RECEIVE Input TPIDATA

PROG_VPP 15 Programmer Vpp Voltage Output Output RESET/VPP

PROG_RESET 16 Programmer RESET Output RESET/VPP

2.4 TPICLK – Clock Signal
The ‘TPI – Clock’ is a clock signal which is continuously generated by the programmer during TPI
programming. This clock is fed from the programmer into the TPICLK pin of the target ATtiny device.
The clock signal must be a continuous waveform with a frequency >= 10 kHz, otherwise the target
ATtiny device will exit TPI programming mode.

Important notes:

• As the ATtiny TPICLK pin is being used as a high-speed clock pin during TPI programming /
debugging, it is therefore very important that this pin is free to oscillate without any external
capacitive or resistive loading.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

11

Recommendations:
• It is recommended that no other components are connected to the TPICLK pin of the target

ATtiny device during TPI programming.

2.5 TPIDATA – Data Signal
The TPIDATA signal is a bi-directional signal line which is used to transfer data between the
programmer and the target ATtiny device and vice-versa. This is a dedicated pin for TPI programmer
and should not be used for any other purposes except TPI programming. When TPI programming
mode is first entered, the programmer automatically becomes the ‘master’ on the TPI bus and drives
the TPIDATA signal line. As part of the TPI protocol, the programmer can then instruct the target
ATtiny device to transmit data back to the programmer. In order to achieve this, the programmer must
reverse the direction of the TPIDATA signal so that the ATtiny device can then drive this line back to
the programmer. The automatic reversal of the data direction is handled by special high-speed driver
hardware on the external programmer.

Recommendations:

• It is recommended that no other components are connected to the TPIDATA pin.
• This pin must be dedicated for TPI data transfer.

2.6 RESET/VPP pin
The ATtiny RESET/VPP pin is used to force the target device into programming mode.

i. Low-voltage TPI
When using the ‘low-voltage TPI’ algorithm, the programmer applies 0V to the ATtiny RESET/VPP
pin to force the device into programming mode. When not in programming mode, the programmer
applies +5.0V to the RESET/VPP pin.

ii. High-voltage TPI
When using the ‘high-voltage TPI’ algorithm, the programmer must apply 12.0V to the ATtiny
RESET/VPP pin to force the device into programming mode. When not in programming mode, the
programmer applies +5.0V to the RESET/VPP pin.

Warning!
The Target System must be specifically designed to allow +12.0V to be applied to the ATtiny
RESET/VPP pin otherwise the target device may be damaged.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

12

2.7 ISPnano Series 3 / 4 - Target ISP Port – TPI pin-out
The ‘Target ISP Connector’ port of the ‘ISPnano Series 3’ programmer features all the signals
required to implement In-System Programming (ISP) of a target ATtiny device using the ‘3-wire TPI’
interface.

The illustration below shows the location of the ‘Target ISP Connector’ port on the rear panel of the
programmer.

‘Target ISP Connector’ port

The connector is a 16-pin bump-polarised IDC
connector with 0.1” pin spacing.

Pin 1 is the top right pin as shown in the diagram
opposite.

This connector also features the programmable “Target Vcc” and “Target Vpp” voltages plus a
switched “EXTERNAL Vcc” supply.

The pins on this connector which are used for the ‘TPI Interface’ are detailed in the table below.

Programmer
Signal name
(16-way IDC)

IDC
pin

Signal description Direction
from
programmer

Pin name on
ATtiny device

TARGET_VCC 1+2 Target Vcc Supply Passive VCC

GROUND (0V) 5+6 Target / Programmer Signal GROUND Passive GND

TPI_CLOCK 7 TPI Clock Signal Output TPICLK

TPI_DATA_TXD 8 TPI Data Signal - TRANSMIT Output TPIDATA

TPI_SYNC 9 TPI Synchronisation Signal Output TPIDATA

TPI_DATA_RXD 13 TPI Data Signal - RECEIVE Input TPIDATA

PROG_VPP 15 Programmer Vpp Voltage Output Output RESET/VPP

PROG_RESET 16 Programmer RESET Output RESET/VPP

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

13

2.8 Signal / Power GROUND (0V) connections
It is very important that both the programmer and Target System (UUT) are earthed correctly.
Incorrect grounding can lead to current flowing in the 0V signal back to the PC which could cause
ESD damage to either the programmer or the UUT. The ISPnano programmer features a ‘Signal
GROUND’ which is a specially filtered (cleaned) 0V signal which is used only for the programming
signals. The UUT should then use its own dedicated ‘Power GROUND’ as this will be much noisier
the programmer 0V.

Signal GROUND (0V)
The ‘Signal GROUND’ is the 0V to which the programming signals (PDI, SPI, JTAG etc) are
referenced to. This is a specially filtered 0V signal line which is used only for the programming
signals. The ‘Signal GROUND’ should be connected from the GROUND pins on the ‘Target ISP Port’
connector directly to the main GROUND on the UUT. The minimum cable length should be used for
this connection.

Power GROUND (0V)
The ‘Power GROUND’ is the 0V to which the Target Board (UUT) uses as its 0V reference. The
‘Power GROUND’ should be connected from the main GROUND (0V) point on the UUT to the ‘Star
connected GROUND of the overall programming fixture. This is usually the point where all 0V
GROUND connections are made for the power supplies in the fixture.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

14

3.0 Creating an EDS Development Project
3.1 Overview
This section describes the steps required to create an ‘EDS – Development Project’ which can be
used to program an ATtiny device under PC control.

3.2 Selecting a Development Project
To create a ‘Development Project’…

• Launch EQTools
• Click the ‘New’ icon
• The ‘New items’ screen is displayed.

• Select the ‘Development Project’ icon and then click the <OK> button
 The ‘Equinox Development Suite (EDS)’ wizard will now start.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

15

3.3 Selecting ‘Programmer and Project Type’
This screen allows you to select:

• The ‘Programmer’
• The ‘Project Type’

i. Programmer

• Select the ‘Programmer’ for which the project is to be compiled for.
• If the programmer is attached to the PC, you can simply click the <Get Info> button to

automatically select the correct programmer.

ii. Project Type

• The ‘Project Type’ should be set to ‘Standalone – keypad control’ for all standalone
projects and ConsoleEDS projects.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

16

3.4 Selecting ‘Target Device’
This screen allows you to select the ‘Target Device’ to be programmed.
The simplest way to find a particular device is as follows:

• Type the ‘Device Name / code’ into the ‘Search for device’ field e.g. ATtiny5
• Click the <Search now> button
 All instances of the ATtiny5 device are now displayed

• Select the required device from the drop-down list and then click the <OK> button.

Important note:

• The ATtiny5 device can be programmed in either ‘Low-voltage TPI LV’ mode at +5V or using
the ‘High voltage TPI HV’ mode which applies +12V to the RESET pin of the target device.

• Please take care to select the correct device / programming mode which matches your target
system. See section 2.2 for further details.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

17

Once the device has been selected, the following screen will be displayed…

Click <Next>

3.5 Selecting the ATtiny oscillator settings
This screen allows you to select the target ATtiny oscillator settings.

• Leave the oscillator source as ‘Internal oscillator’. Do not change the ‘Programmer OP4
Clock’ as this is not required for XMEGA programming.

• Click <Next>  the <Target Power Supply> screen is displayed.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

18

4.7 Setting up the Target Power Supply
This screen allows you to set up how the programmer powers the Target System.

For ATtiny TPI programming, the programmer must power the ‘Target System’ at 5.0V.

Important note:
The programming will not work below 5.0V. This is a limitation of the ATtiny devices for programming
purposes only. It is possible to run the ATtiny devices at less than 5.0V after programming them.

To power the Target System from the programmer:

• Set the ‘Programmer controlled Target Power Supply’ to ‘ON’
• Set the ‘Target Voltage’ to 5.0V

To power the Target System from an external +5V supply:

• Set the ‘Programmer controlled Target Power Supply’ to ‘OFF’
• Set the ‘Target Voltage’ to 5.0V

Click <Next>  the <Erase options> screen is displayed.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

19

4.8 Setting up the ATtiny ‘Erase Options’
This screen allows you to set up how programmer handles the erasing of an ATtiny device.

• By default, the programmer will perform a ‘Chip Erase’ operation which will erase the entire
FLASH area but not the ‘Config section’ where the fuses are stored.

• If you plan to re-program the ‘Configuration fuses’ in your project, then you need to select
‘Erase – Config Section (Fuses)’ in the Erase Options menu.
Click <Next>  the <FLASH Area Programming options> screen is displayed.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

20

4.9 Setting up the ATtiny ‘FLASH Programming’
This screen allows you to set up how to program the FLASH area of the ATtiny device.

To load a file for programming into the FLASH area…

• Click the <Browse> button
• Select the required input file e.g. *.bin, *.hex, *.SREC
 The start and end address of the input file will be displayed.
 The ‘Operation’ is automatically set to ‘Program/Verify’ which means the programmer will
program each page and then verify each page of FLASH.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

21

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

22

Appendix 1 – ISPnano-QC1 Quick Connect
Module
1.0 Overview
This appendix describes the ‘ISPnano-QC1’ Quick Connect Module. This module features all the
required circuitry required to implement ATtiny AVR programming via the 3-wire TPI programming
interface. The module plugs into the 16-way ‘Target ISP Port’ on the ‘ISPnano Series 3’
programmer or ‘Series 3 ATE’ programmer. It provides so-called ‘Quick connect’ connections
allowing both an ‘ATtiny TPI’ Target System and either a ‘JTAG or SPI’ Target System to be
connected to the programmer at the same time.

Features

• Plugs into the 16-way ‘Target ISP Port’ on the ‘ISPnano Series 3’, ‘ISPnano Series 3 ATE’
or ‘ISPnano Series 4’ programmer.

• Features all circuitry required for programming an Atmel ATtiny AVR microcontroller via the
‘ATtiny TPI’ programming interface

• Allows an second device to be connected to the same programmer via either the JTAG or SPI
interface

• All Target I/O signals are available via ‘Quick-connect’ connectors
• External-Vcc in-line fuse
• ‘Target Vcc’ LED
• ‘External Vcc’ LED

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

23

1.1 Quick-Connect connector pin-out
The pin-out of the Quick Connect connectors is detailed in the table below.

QC
pin

QC
Signal
Name

Signal description Direction
from
programmer

Pin name on
target device

1 VCC Target Vcc Supply Passive VCC

2 EXT EXTERNAL switched Target Vcc Supply Passive See note 1

3 GND Target / Programmer Signal GROUND Passive GND

4 CLK ATtiny TPI Clock Output TPICLK

5 DATA ATtiny TPI Data Output TPIDATA

6
I/O5 Spare I/O

Input /
Output

See note 2

7 I/O4 JTAG – TMS Output JTAG - TMS

8
I/O3 • SPI – SCK

• JTAG – TCK
Output

• SPI – SCK
• JTAG - TCK

9
I/O2 • SPI – MISO

• JTAG – TDO
Input

• SPI – MISO
• JTAG - TDO

10
I/O1 • SPI – MOSI

• JTAG – TDI
Output

• SPI – MOSI
• JTAG - TDI

11 RST RESET Output See note 3

12 VPP VPP Voltage PASSIVE See note 4

Please note:

• The signal names printed on the ’ISPnano-QC1’ Quick Connect Module are shown in the ‘QC
Signal Name’ column in the table.

• The Atiny ‘TPI Clock’ and ‘TPI Data’ signals are marked as ‘CLK’ and ‘DATA’ respectively
and should be connected to the target ATtiny TPICLK pin and TPIDATA pins.

Note 1
The ‘EXTERNAL switched Target Vcc Supply’ is an external voltage applied to the ‘DC-EXT’ pin of
the programmer which can be switched to the Target System. It is usually used to switch a voltage to
the input of a voltage regulator circuit on the Target System. If you are not using this functionality,
then do not connect this pin.

Note 2
This is a spare I/O line which is not used for either the SPI or JTAG algorithms.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

24

Note 3
The RESET pin of the programmer should be connected to the target ATtiny RESET pin

Note 4
The VPP pin outputs a programmable voltage (+12.0V) which is used for the ‘high-voltage TPI
mode’. If the Vpp voltage is required, then the PROG_VPP pin of the programmer must be connected
to the RESET/VPP pin of the target ATtiny device.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

25

Appendix 2 – Using ConsoleEDS to program
ATtiny TPI devices
1.0 Overview
This appendix describes how to use the ConsoleEDS utility to program Atmel ATtiny microcontrollers
via the TPI programming interface. It is possible to use ConsoleEDS to program the FLASH,
Configuration Fuses and Security Fuses of an ATtiny device using simple command strings executed
via the command line.

Please note:
This section provides specific instructions of how to use ConsoleEDS to program an ATtiny device.
For further information about how to use the ConsoleEDS application, please refer to Application Note
AN111.

1.1 Explanation of ConsoleEDS ‘Base Projects’
Most ConsoleEDS commands require that a ‘Base Project’ is created for each device to the
programmed. The ‘Base Project’ is used by ConsoleEDS to define the following parameters about
the target device / target system:

• Target Device e.g. ATtiny10
• Target Programming Interface e.g. Low-voltage TPI
• Target Vcc Voltage e.g. +5V
• Target Vpp Voltage e.g. +12V
• Target Power Supply characteristics e.g. Current
• Target Programming speed e.g. 115 kBaud
• Device Signature / Device ID

The ‘Base Project’ is declared on the ConsoleEDS command line as follows:
ConsoleEDS BaseProject.prj /FLASHWRITE=FlashData.hex

1.2 Creating ATtiny low-voltage and high-voltage base projects
As ATtiny TPI devices can be programmed in both ‘Low-voltage (TPI LV)’ and ‘High voltage (TPI
HV)’ modes, it is recommended that two different ‘Base Projects’ are created, one for each mode.
This makes it very simple to then switch between modes in the ConsoleEDS environment.

For example, the following Base Projects could be created for the ATtiny10 device…..
i. ATtiny10 – low-voltage mode - ATtiny10LV.prj

• Select ATtiny10 (LV TPI) device

ii. ATtiny10 – high-voltage mode - ATtiny10HV.prj

• Select ATtiny10 (HV TPI) device

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

26

The table below shows how the two ‘Base Projects’ should be set up….

Base
Project
name

Device name Programming
mode

Vcc
voltage
(V)

Vpp
Voltage
on
RESET
pin (V)

Can always enter
programming mode?

ATtiny10LV
ATtiny10 (TPI LV)

Low-voltage
TPI

+5.0 +5.0
No – will fail if
RSTDIBL fuse is set to
‘0’

ATtiny10HV ATtiny10 (TPI HV) High-voltage
TPI

+5.0 +12.0 Yes – will always work

1.3 Setting up a ConsoleEDS ‘Base Project’
The simplest way to set up a ConsoleEDS ‘Base Project’ is to use the EDS ‘Development Wizard’.

Here is an overview of how to set up a ‘Base Project’:

• Launch the EDS Development Wizard
• Select the required device eg. ATtiny10 (TPI LV)
• Make sure the ‘Erase task’ is enabled in the project and all ‘Erase options’ are enabled.
• Make sure the ‘Fuse task’ is enabled in the project. It doesn’t matter what fuse values are

selected, only that the ‘Fuse task’ is enabled.
• Make sure the ‘Security task’ is enabled in the project. It doesn’t matter what fuse values are

selected, only that the ‘Security task’ is enabled.
• You should not select any FLASH file in the project.
• Compile the project to make a *.prj project eg. ATtiny10LV.prj
• You have now created a ‘Base Project’.

1.4 Reading the ‘Device Signature / ID’
It is possible to read the ‘Device Signature’ from the target device using the /READSIG command.
This command allows ConsoleEDS to check that the correct device is connected to the programmer
and that the device will enter programming mode OK.

Typical command useage:
ConsoleEDS ATtiny10LV.PRJ /READSIG

Typical response:
Console EDS - Signature read back: 0x1E9003

Possible errors:
If ConsoleEDS reports ‘Error 3039 - Failed to Enter Programming Mode, tried 1 times!’ then it
may be that the target device has previously had the RSTDISBL fuse set to ‘0’ which has disabled the
RESET pin. This means that using the ‘Low voltage programming mode’ will always fail to enter

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

27

programming mode. The only way around this error is to use the ‘High voltage programming mode’
to re-enable the RESET pin.

1.5 Erasing the FLASH and Fuses
The ATtiny devices feature FLASH technology where each byte of FLASH can be re-programmed but
only if the entire FLASH has been erased first. The programmer can program any bit in the FLASH
from a ‘1’ to a ‘0’ but cannot program a ‘0’s back to a 1. This means that the programmer must send
the ‘Chip Erase’ command to erase all FLASH locations back to 0xFF BEFORE any new data can be
programmed into the FLASH area.

Typical command useage:
ConsoleEDS ATtiny10LV.PRJ /ERASE

Typical response:
Console EDS - Erasing target
Console EDS - TARGET_ERASE

Please note:

i. The /ERASE command does not receive any feedback from the target device to tell it whether the
erase operation worked or not. It is therefore up to the next commands in the sequence to handle any
errors if the erase did not work.

ii. The ‘Erase task’ must be enabled in the ‘Base Project’ otherwise the erase operation will fail.

iii. The erase operation could also erase the ‘Configuration fuses’ back to the value 0xFF if this
option has been selected in the ‘Base Project’.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

28

1.6 Programming the FLASH using the /FLASHWRITE command
The /FLASHWRITE command is used to program data from a file on the PC hard disk to the FLASH
area of the target device. It is possible to program any address range from a single byte to the entire
FLASH area of the device.

Typical example:
ConsoleEDS ATtiny10LV.PRJ /ERASE /FLASHWRITE=FLASH_DATA.HEX /OFFSET=0x4000

This example will erase the entire FLASH area first and then program the data contained in the file
FLASH_DATA.HEX into the FLASH area of the device. The /OFFSET command is required as the
ATtiny FLASH actually starts at address 0x4000.

i. Supported file types
EQTools supports loading of the following file types:

• *.BIN – Binary file
• *.HEX – Intel Hex file
• *.SREC – Motorola S-Record file

ii. ERASE the FLASH before programming
The FLASH technology used on Atmel ATtiny devices only supports a ‘Chip Erase’ command which
erases the entire FLASH area. The address range of the FLASH to be programmed must be erased
to 0xFF BEFORE programming the file otherwise the programming operation will fail. This can be
achieved by using the /ERASE command.

Typical example:
ConsoleEDS ATtiny10LV.PRJ /ERASE
 This will erase the entire FLASH area.

iii. FLASH offset start address
The internal FLASH memory of an ATtiny device does not start at address 0x00000.
It actually starts at 0x4000 (see ATtiny memory map) so it is necessary to use the /OFFSET=0x4000
command to program the FLASH using ConsoleEDS.

If the FLASH area to be programmed is already erased to 0xFF:
ConsoleEDS ATtiny10LV.PRJ /FLASHWRITE=FLASH_DATA.HEX /OFFSET=0x4000

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

29

1.7 Programming the Fuses using the /FUSEWRITE command
The simplest method of programming the ‘Configuration fuses’ of an ATtiny devices is to use the
/FUSEWRITE command. This command allows the ‘hex value’ of the fuses eg. 0xFF to be
programmed directly into the ‘Fuse array’ of the target device. It also performs a ‘Fuse verify’ after
programming the fuses.

Typical example:
ConsoleEDS ATtiny10LV.PRJ /FUSEWRITE=0xFF

The ‘hex value’ of the fuses can be found from any one of the following sources:

• ‘AVR Studio’ project or screenshot
• Atmel ELF File
• Equinox – EQTools Project file

Important notes:

1. The new ‘Configuration fuses’ settings are not actually latched into the device (do not
become active) until the ATtiny device has exited programming mode, powered down to 0V
and then powered back up to Vcc again.

2. If power is left on the device or the device is able to ‘phantom power’ from one of its I/O pins,
then the ‘Configuration fuses’ settings may not become active. A complete power-cycle is
required before the fuses become active.

Warning!
If you program the ‘RSTDIBL – RESET Disable’ fuse to a ‘0’ then the ATtiny device will disable its
RESET pin. This means that the programmer will no longer be able to enter programming mode using
‘Low voltage’ programming mode.

1.8 Reading the Fuses using the /FUSEREAD command
The hex value of the fuses of an ATtiny device can be read back using the /FUSEREAD command.
This command will return the ‘hex value’ of the fuses eg. 0xFF.

Typical example:
ConsoleEDS ATtiny10LV.PRJ /FUSEREAD
Console EDS - MISP_FUSE_READ
Console EDS - Fuses Read: 0xFF
Console EDS - FINISH

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

30

1.9 Programming the ‘Security Fuses’ using the
/SECURITYWRITE command
The simplest method of programming the ‘Security fuses’ (Lock bits) of an ATtiny devices is to use
the /SECURITYWRITE command. This command allows the ‘hex value’ of the ‘Security fuses’ eg.
0xFE to be programmed directly into the ‘Security Fuse array’ of the target device.

Typical example:
ConsoleEDS ATtiny10LV.PRJ /SECURITYWRITE=0xFE
Console EDS - MISP_LOCK_WRITE
Console EDS - Security Fuses Written: 0xFE
Console EDS - Reading security fuses
Console EDS - MISP_LOCK_READ
Console EDS - Security Fuses Read: 0xFE

The ‘hex value’ of the ‘Security fuses’ can be found from any one of the following sources:

• ‘AVR Studio’ project or screenshot
• Atmel ELF File
• Equinox – EQTools Project file

Warning!
Once you have locked the device (set both Lock Bits to 0), then you can no longer read / write the
FLASH memory or change the value of the ‘Configuration fuses’ or the ‘Security fuses’. The only
way to then re-program the device is to perform a ‘Chip Erase’ operation.

1.10 Reading the ‘Security Fuses’ using the /SECURITYREAD
command
The ‘hex value’ of the ‘Security fuses’ of an ATtiny device can be read back using the
/SECURITYREAD command. This command will return the ‘hex value’ of the ‘Security fuses’ eg.
0xFF.

Typical example:
ConsoleEDS ATtiny10HV.PRJ /SECURITYREAD
Console EDS - Reading security fuses
Console EDS - MISP_LOCK_READ
Console EDS - Security Fuses Read: 0xFF

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

31

1.11 Executing a ‘Standalone Programming Project’
The fastest method of programming an ATtiny device will always be to use a ‘Standalone
programming project’ stored inside the programmer memory. This is also a very simple and neat
way of programming in a production environment as a ‘Standalone programming project’ performs
all the required programming actions in a single pre-compiled project.

Typical example:
ConsoleEDS /AUTOPROGRAM=PROJECTNAME

This command will execute the ‘Standalone programming project’ called ‘PROJECTNAME’ which
is stored inside the programmer memory. This project must have already been pre-configured and
uploaded to the programmer BEFORE executing the /AUTOPROGRAM command.

A ‘Standalone programming project’ can perform all or some of the actions below:

• Power up the UUT
• Enter programming mode
• Validate the ‘Device Signature / ID’
• Erase the ‘Lock Bits’ and then the entire FLASH area
• Program the FLASH area
• Program the ‘Configuration fuses’
• Program the ‘Security fuses’ (Lock Bits)
• Power down the UUT

Why use a ‘Standalone programming project’ ?
The ‘Standalone programming project’ will be much faster at programming large areas of FLASH
compared to programming the same data using the /FLASHWRITE command. This is because in
standalone mode, the data is stored locally on the programmer so the data retrieval time is much
faster than transferring it from the PC.

1.12 Mixing a ‘Standalone project’ with individual programming
commands
It is possible to combine multiple ConsoleEDS commands in a single session to create quite complex
programming sequences. In the example below, a ‘Standalone programming project’ stored inside
the programmer memory is used to program the ‘main firmware’ into the FLASH at high speed. A
unique ‘serial number’ is then programmed from a file called SerialNumber.hex. Finally the fuses
are programmed and the device is then locked.

Typical example:
ConsoleEDS ATtiny10LV.PRJ /AUTOPROGRAM=MAINPROG
/FLASHWRITE=SerialNumber.HEX /FUSEWRITE=0xFE /SECURITYWRITE=0xFE
/OFFSET=0x4000

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

32

This single ConsoleEDS command line session will perform the following programming actions:
• Execute the ‘Standalone programming project’ - MAINPROG

o Power up the UUT (if programmer controlling target power)
o Enter ‘low-voltage’ TPI programming mode
o Erase the ‘Lock Bits’ and then the entire FLASH area

• Programs the data contained in the file ‘SerialNumber’ into the FLASH area
• Programs the ‘Configuration fuses’
• Programs the ‘Security fuses’ (Lock Bits)
• Exits ‘low-voltage’ TPI programming mode
• Power down the UUT

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

33

1.13 Typical ATtiny programming sequence
It is possible to combine multiple ConsoleEDS commands in a single session to create quite complex
programming sequences. The example below enters programming mode, erases the FLASH area
and then programs some data contained in the file ‘FLASH_DATA.HEX’. Finally the ‘Configuration
fuses’ and ‘Security fuses’ are programmed.

Typical example:
ConsoleEDS ATtiny10LV.PRJ /ERASE /FLASHWRITE=FLASH_DATA.HEX /FUSEWRITE=0xFF
/SECURITYWRITE=0xFE /OFFSET=0x4000

This single ConsoleEDS command line session will perform the following programming actions:

• Power up the UUT (if programmer controlling target power)
• Enter ‘low-voltage’ TPI programming mode
• Erase the ‘Lock Bits’ and then the entire FLASH area
• Programs the data contained in the file ‘FLASH_DATA.HEX’ into the FLASH area
• Programs and verifies the ‘Configuration fuses’
• Programs and verifies the ‘Security fuses’ (Lock Bits)
• Exits ‘low-voltage’ TPI programming mode
• Power down the UUT

Important notes:

3. The new ‘Configuration fuses’ settings are not actually latched into the device (do not
become active) until the ATtiny device has exited programming mode, powered down to 0V
and then powered back up to Vcc again.

4. If power is left on the device or the device is able to ‘phantom power’ from one of its I/O pins,
then the ‘Configuration fuses’ settings may not become active. A complete power-cycle is
required before the fuses become active.

5. The programmer will keep the target device in programming mode throughout the
ConsoleEDS session which can save a considerable amount of time as it can take 300 –
500ms exiting and re-entering programming mode.

Warning!
If you program the fuses to 0xFE then this will program the ‘RSTDIBL – RESET Disable’ fuse to a
‘0’. This forces the ATtiny device to disable its RESET pin. This means that the programmer will no
longer be able to enter programming mode using ‘Low voltage’ programming mode. The
/SECURITYWRITE command will still work as long as the ATtiny device has not yet exited
programming mode.

Application Note 132 - In-System Programming (ISP) of the Atmel ATtiny AVR FLASH Microcontroller Family using the
TPI Interface

34

1.14 Disabling the ATtiny RESET pin
If you are using the ‘Low voltage’ programming mode to program the ATtiny device and want to
disable the RESET pin, then this must be done as the final programming action. The ATtiny device
does not always latch in the fuses until it has exited programming mode and been completely
powered down and back up again.

i. To disable the RESET pin in ‘Low voltage’ programming mode…
ConsoleEDS ATtiny10LV.PRJ /FUSEWRITE=0xFE
 The RESET pin is disabled and the ATtiny device will no longer communicate with the
programmer.
ii. To disable the RESET pin in ‘Low voltage’ programming mode and also lock the device….
ConsoleEDS ATtiny10LV.PRJ /FUSEWRITE=0xFE /SECURITYWRITE=0xFE
 The programmer programs the RSTDISBL fuse to ‘0’ but then stays in programming mode and
programs the ‘Security fuses’ which locks the device. It is only when the programmer exits
programming mode that the device latches in the new fuse settings. At this point the ATtiny device will
no longer communicate with the programmer.

iii. Checking that the RESET pin has been disabled
The following sequence can be used to check that the RESET pin has been disabled….

• Follow the instructions in (i) or (ii)
• Use the /READSIG command to attempt to communicate with the device.
 This should fail with e.g. Error 40 – Failed to enter programming mode.

1.15 Resurrecting a device where the RESET pin is disabled
If the ‘RSTDIBL – RESET Disable’ fuse has been set to a ‘0’ then the target ATtiny device will no
longer be able to enter programming mode using ‘Low voltage’ programming mode. The only way to
re-program a device in this state is to use the ‘High voltage’ programming mode to re-enable the
‘RSTDIBL – RESET Disable’ fuse. Once this is done, the ‘Low voltage’ programming mode will
work as normal again.

Typical example:
ConsoleEDS ATtiny10HV.PRJ /ERASE /FUSEWRITE=0xFF

The ‘high voltage’ base project ‘ATtiny10HV’ must be used. This will force the programmer to switch
a +12V Vpp voltage to the RESET pin of the target ATtiny device. This is used to enter ‘high voltage’
programming mode. The /ERASE command is required if the ATtiny ‘Security fuses’ have been set.
It is not possible to re-program the ‘Configuration fuses’ if the ‘Security fuses’ have been set. The
device must be erased first.

	Contents
	1.0 Introduction
	1.1 Programmers supporting ATtiny TPI programming
	1.2 Programmer firmware for ATtiny TPI support
	1.3 ISPnano Series 3 - Equipment required for ATtiny TPI support
	1.4 ATtiny – TPI - Device Support

	2.0 ATtiny TPI Programming Interfaces
	2.1 Overview of the ATtiny TPI Programming Interface
	2.2 Low voltage / high voltage TPI programming
	2.3 Connecting an ATtiny TPI device to an ISPnano programmer
	2.4 TPICLK – Clock Signal
	2.5 TPIDATA – Data Signal
	2.6 RESET/VPP pin
	2.7 ISPnano Series 3 / 4 - Target ISP Port – TPI pin-out
	2.8 Signal / Power GROUND (0V) connections

	3.0 Creating an EDS Development Project
	3.1 Overview
	3.2 Selecting a Development Project
	3.3 Selecting ‘Programmer and Project Type’
	3.4 Selecting ‘Target Device’
	3.5 Selecting the ATtiny oscillator settings
	4.7 Setting up the Target Power Supply
	4.8 Setting up the ATtiny ‘Erase Options’
	4.9 Setting up the ATtiny ‘FLASH Programming’

	Appendix 1 – ISPnano-QC1 Quick Connect Module
	1.0 Overview
	1.1 Quick-Connect connector pin-out

	Appendix 2 – Using ConsoleEDS to program ATtiny TPI devices
	1.0 Overview
	1.1 Explanation of ConsoleEDS ‘Base Projects’
	1.2 Creating ATtiny low-voltage and high-voltage base projects
	1.3 Setting up a ConsoleEDS ‘Base Project’
	1.4 Reading the ‘Device Signature / ID’
	1.5 Erasing the FLASH and Fuses
	1.6 Programming the FLASH using the /FLASHWRITE command
	1.7 Programming the Fuses using the /FUSEWRITE command
	1.8 Reading the Fuses using the /FUSEREAD command
	1.9 Programming the ‘Security Fuses’ using the /SECURITYWRITE command
	1.10 Reading the ‘Security Fuses’ using the /SECURITYREAD command
	1.11 Executing a ‘Standalone Programming Project’
	1.12 Mixing a ‘Standalone project’ with individual programming commands
	1.13 Typical ATtiny programming sequence
	1.14 Disabling the ATtiny RESET pin
	1.15 Resurrecting a device where the RESET pin is disabled

