

MCA-430 Assembler
and Utilities

for Texas Instruments

MSP430

Assembler, Linker,
Library Manager,

Object to Text Converter

User’s Guide

micro
cosm

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of MicroCOSM Software Technologies. While
the information contained herein is assumed to be accurate, MicroCOSM Software
Technologies assumes no responsibility for any errors or omissions. In no event shall
MicroCOSM Software Technologies, its employees, its contractors, or the authors of
this document be liable for special, direct, indirect, or consequential damage, losses,
costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature
or kind.

COPYRIGHT NOTICE

© Copyright 2003 MicroCOSM Software Technologies. All rights reserved.
No part of this document may be reproduced by any means, electronic or mechanical,
including photocopying, recording, or information storage and retrieval systems, for
any purpose other than for the purchaser’s use, without the prior written permission
of MicroCOSM Software Technologies. The software described in this document is
furnished under an agreement and may only be used or copied in accordance with the
terms of such an agreement.

For convenience, the short name ‘MicroCOSM-ST’ is used hereinafter to refer to
MicroCOSM Software Technologies.

Preface

MCA-430 Assembler User's Guide provides information about MicroCOSM-ST
Macro Assembler for Texas Instruments MSP430 microcontroller family.

The complete tool set available for the MSP430 also includes MicroCOSM-ST
MCC-430 C Compiler and several software/hardware tools supplied by Phyton, Inc.,
used for development, debugging and "burning" code into target microcontroller. All
tools are integrated under Phyton Project-430 IDE but can be invoked from the
command line as well.

This document contains detailed reference information about the following
components:

§ MCA-430 Assembler

§ MCLINK Linker and Utilities

For information on other components, please refer to the related documentation.

We believe this document thoroughly describes all issues related to MCA-430. If nevertheless
after reading this manual you cannot get an answer to your question, please e-mail it to
MicroCOSM-ST technical support service at support@microcosm-st.com.

For information about Phyton, Inc. products, please read the related documentation provided
by Phyton, Inc. or visit www.phyton.com

Document Conventions

The following style conventions are used in this manual:

Style Used for
courier Source Assembler text; display on the console.
parameter The actual value that you should enter to replace the parameter name in the program

or the command line.

[optional] Optional parameter that can be skipped in an assembler directive or instruction.

bold Names of attributes and command line options. Also used in text to stress importance
of a statement.

CAPITAL Assembler operators and directives, predefined assembler constants and variables,
address space names (memory types).

Document Overview

This guide is divided into following chapters:

 Introduction, provides the summary information about the MCA-430 Assembler, the MCLINK Linker
and Utilities, with a short usage example.

 Chapter 1. Basic Conceptions, introduces basic conceptions such as address spaces, segments, modules,
and symbolic names and their attributes. The latter allow managing allocation of code and data in
available physical memory, checking operand type in instructions and detecting errors on assembly and
linking stages.

 Chapter 2. MCA-430 Assembler, contains an overview of the assembly language and a detailed
description of all MCA-430 operators, directives and macro tools. An additional section covers issues
related to the MSP430 target architecture support.

 Chapter 3. MCLINK Linker, explains main functions of MCLINK Linker and describes stages of the
linking process, such as resolving external references, establishing set of modules to be linked, linking
segments and allocating them in address spaces, and binding the object code to physical addresses.

 Chapter 4. MCLIB Librarian, describes library creation and management with the MCLIB Librarian.

 Chapter 5. MCDUMP Utility, describes the MCDUMP Object-to-Text Converter.

 Appendices, which contain summaries of Assembler directives, Assembler operators and variables,
description of Assembler, MCLINK, MCLIB, and MCDUMP command line options, and description
of Assembler, MCLINK, MCLIB, and MCDUMP diagnostic messages.

References

Assembly language programming assumes knowledge of the target processor architecture and the
instruction set. For detailed information on the MSP430 microcontrollers, please refer to [1a-1c].

For additional information on development of mixed C/Assembler projects, see [2].

If you have not used Phyton/MicroCOSM-ST tool sets before, please read sections of [3] about running
MicroCOSM-ST tools from Phyton Integrated Development Environment to learn how to work with the
projects.

1a. MSP430x4xx Family. User's Guide. 2002 Texas Instruments SLAU56B.
1b. MSP430x3xx Family. User's Guide. 2000 Texas Instruments SLAU012.
1c. MSP430x1xx Family. User's Guide. 2001 Texas Instruments SLAU49A.
2. MCC-430 C Compiler for MSP430. User's Guide. 2003 MicroCOSM-ST.
3. Phyton IDE Online Help. 2003 Phyton, Inc.

Contents

Chapter 1. Basic Conceptions..12
1.1. Introduction .. 12
1.2. Modules .. 12
1.3. Address Spaces ... 13
1.3.1. Address Space ‘Allocation’ Attribute... 13
1.4. Segments.. 14
1.4.1. Segment Types.. 14
1.4.2. Segment ‘Allocation’ Attribute ... 15
1.4.3. Allocating Segments in Address Spaces... 15
1.5. Symbolic Names .. 15
1.5.1. Local, External and Public Names.. 15
1.5.2. ‘Relocatability’ Attribute ... 16
1.5.3. Name Types and ‘Type’ Attribute ... 16
1.5.4. ‘Operand Type’ Attribute... 17
1.5.5. ‘Allocation’ Attribute ... 18
Chapter 2. MCA-430 Assembler ...19
2.1. Command Line Format .. 19
2.2. Assembler Syntax .. 19
2.2.1. Vocabulary and Grammar ... 20
2.2.2. Lexical Elements ... 20
2.2.3. Assembler Statements.. 20
2.3. Assembler Expressions... 22
2.3.1. Operands ... 23
2.3.2. Type Conversion and Checking in Expressions ... 25
2.3.3. Predefined Variables ... 26
2.3.4. Predefined Constants.. 26
2.4. Assembler Operators... 27
2.4.1. Addition and Subtraction.. 27
2.4.2. Multiplication and Division ... 27
2.4.3. Shift Operators .. 27
2.4.4. Bitwise Operators.. 27
2.4.5. Relational Operators ... 28
2.4.6. Byte/Word Extraction Operators .. 28
2.4.7. Setting Operand Type of Expression ... 29
2.4.8. Miscellaneous Operators .. 29
2.4.9. Operator Precedence .. 32
2.5. Assembler Directives... 34
2.5.1. Module Declaration ... 34
2.5.2. Including File ... 35
2.5.3. Segment Declaration and Selection... 35
2.5.4. Memory Initialization ... 37
2.5.5. Memory Reservation without Initialization .. 39
2.5.6. Symbol Definition.. 40
2.5.7. Program Linkage ... 42

2.5.8. Assignment of Attributes to Names... 45
2.5.9. Function Declaration .. 46
2.5.10. Address Control .. 47
2.5.11. Conditional Assembly... 48
2.5.12. Listing Control .. 48
2.5.13. Miscellaneous Directives.. 50
2.6. Functions ... 51
2.6.1. Pure Assembler Programs ... 52
2.6.2. Mixed C/Assembler Programs.. 52
2.7. Macro Tools.. 53
2.7.1. Defining a Macro ... 54
2.7.2. Calling a Macro ... 56
2.7.3. Local Names in Macros .. 57
2.7.4. Repeating Blocks.. 58
2.7.5. Special Characters in Macros and Repeating Blocks....................................... 60
2.7.6. Nested Macro Calls and Definitions... 63
2.8. TI MSP430 Architecture Support .. 63
2.8.1. Operand Attributes Checking in Instructions ... 63
2.8.2. Alignment .. 65
2.8.3. Implementation of Immediate Addressing .. 65
2.9. Programming with MCA-430 ... 65
2.9.1. SFRs and Peripheral Module Registers... 65
2.9.2. Stack Initialization... 65
2.9.3. Setting Interrupt Vectors .. 66
2.9.4. Assembly Program Example.. 66
Chapter 3. Linker... 68
3.1. Command Line Format .. 68
3.2. Modules for Linking... 69
3.3. Resolving External References and Type Checking ... 69
3.4. Setting up Address Spaces... 69
3.5. Linking Relocatable and Overlay Segments.. 70
3.6. Segment Allocation ... 70
Chapter 4. MCLIB Librarian.. 71
4.1. Command Line Format .. 71
Chapter 5. MCDUMP Object-to-Text Converter .. 73
5.1. Command Line Format .. 73
Appendix A. Assembler Directives Summary ... 74
Appendix B. Assembler Operators and Variables Summary............................... 76
Appendix C. Assembler Command Line Interface.. 78
@filename 78
-Ipath: Search for include files in the specified directories .. 78
-u: Ignore character case ... 78
-d: Generate debugging information ... 78
-a: Disable instruction operand type checking .. 78
-r: Disable detection of jumps made to the data memory.. 79
-l: Generate listing file... 79
-Jpath: Place object file in the specified directory ... 79

-Lpath: Place listing file in the specified directory.. 79
-x: Include cross-reference table in the listing ... 79
-c: Include false conditionals in the listing ... 79
-g: Include macro definitions in the listing ... 79
-e: Include macro expansions in the listing ... 79
-w: “Wide” listing output .. 80
-p: Split listing into 40 line pages .. 80
-Pnn: Split listing into pages of the specified length .. 80
-Enn: Terminate assembling after nn errors.. 80
-Wnn: Display not more than nn warnings .. 80
-b: Produce beep if error is detected... 80
-s: Display the number of processed lines .. 80
-h or -?: Display the list of options on the console... 80
Appendix D. MCA-430 Command Line Interface ...81
@filename 81
-A: Define an address space... 81
-C: Enable code generating in address space .. 81
-K: Reserve address ranges in address space with the specified allocation.............................. 82
-N: Reserve address ranges in the address space ... 82
-S: Segment allocation.. 82
-E: Specify output file name and target directory... 83
-O: Specify the search paths for object files.. 83
-F: Specify the output file format ... 83
-H: Define the filename extension for HEX-file.. 84
-Z: Increase segment size .. 84
-m: Create a MAP-file ... 84
-M: Omit specified section in MAP-file .. 84
-t: Disable type checking... 85
-w: Linker warnings control ... 85
-h or -?: Display the list of options on the console... 85
-p, -l, -o: Prefixes changing module type.. 85
Appendix E. MCLIB Command Line Interface ...86
@filename 86
-a: Add modules to library... 86
-d: Delete modules from library... 86
-r: Replace modules in library ... 86
-x: Extract modules from library to object files... 86
-X: Extract modules from library into a single object file .. 86
-m: Move modules from library to object files.. 87
-M: Move modules from library to single object file ... 87
-l: Display library header on the console ... 87
-P: Assign ‘program’ attribute to modules ... 87
-L: Assign ‘library’ attribute to modules ... 87
-O: Assign ‘low-priority library’ attribute to modules .. 88
-h or -?: Display the list of options on the console... 88
Appendix F. MCDUMP Command Line Interface ..89
-e: List external names and module names .. 89
-m: List module names ... 89
-p: List public names and module names.. 89
-s: List segment names and module names.. 89
-H: List contents of library header ... 89
-r: Do not replace numbers with symbols.. 89
-h or -?: Display the list of options on the console... 89
Appendix G. Diagnostics ...90
MCA-430 Diagnostic Messages.. 90

MCLINK Diagnostic Messages... 99
MCLIB Diagnostic Messages ... 103
MCDUMP Diagnostic Messages .. 104

 9

Introduction

This guide describes the following tools: the MCA-430 Assembler, MCLINK Linker, MCLIB Librarian,
and MCDUMP Object-to-Text Converter.

MCA-430 Assembler is a powerful cross-assembler which translates the source text to relocatable object
modules for linking. MCA-430 main features:

§ Has an extensive set of directives and operators
§ Strict operand type checking
§ Powerful macro capabilities and repeating blocks
§ Local labels and names in functions and macros
§ Supports copying the code from the Flash/ROM to the RAM for execution
§ Allows assigning C types to variables and functions

MCLINK Linker is a tool which links one or more relocatable object files produced by the
MicroCOSM-ST Assembler or Compiler and, if necessary, libraries to create executable code for target
microcontroller. MCLINK main features:

§ Provides all required functionality to produce PROMable code
§ Produces detailed debugging information for all entities in the user program
§ Generates informative map-file with customizable contents
§ Performs C type checking for variables and functions
§ Supports 2 priority levels of library modules to extend the flexibility of library usage

MCLIB Librarian is a utility for creating and managing libraries. MCLIB is used to create libraries from
the relocatable object file, as well as to add, list, delete, replace, extract or move modules to/from
libraries, and change the type of modules contained in libraries to 'program', 'library', or 'low-priority'.

MCDUMP Object-to-Text Converter is a utility for converting object files, libraries, and executable
files into readable text form.

Filename Extensions
The following filename extensions are used:

Extension Contents and description
.MCA Source code file; contains ASCII text, which is the input for the MCA-430

Assembler.
.MCO Relocatable object file, generated by the MCA-430 Assembler or MCC-430

Compiler. Contains program code and control information. Usually, a set of the
object files is the input for the MCLINK Linker.

.MCL Library file generated by the MCLIB Librarian from the relocatable object files.

.LST Listing file generated by the MCA-430 Assembler.

.MAP Listing file generated by the MCLINK Linker to document the linking process.

.MCE Executable MCE-file in MicroCOSM-ST/Phyton format, generated by the MCLINK
Linker. This file contains executable code and debugging information and can be
used for debugging with the Phyton IDE (see IDE Online Help).

.HEX Absolute Intel HEX file generated by the MCLINK Linker for CODE memory.

 10

.ZAX File with debugging information, in the ZAX-format, generated by the MCLINK
Linker.

Usage Example
The following example demonstrates how to use MCA-430 and MCLINK to obtain a file with code
which can be loaded in the microprocessor memory and/or used for debugging. The MCA-430 Assembler
command line options are described in Appendix C. MCA-430 Command Line Interface. The MCLINK
Linker command line options are described in Appendix D. MCLINK Command Line Interface. For
information on Phyton IDE, please refer to IDE Online Help.

1) Create a file named MYPROG.MCA with the following contents:

 .RSEG _MyData, data
 res .dsi
 .public res

 .RSEG STACK, data
 .align 1
 .ds 40h ;reserve 64 bytes for stack

 .RSEG _MyConst, code
 sernum .dcb '2613'

 .ASEG _Reset,code
 .org 0FFFEh
 .dcw START

 .RSEG _MyCode,code
START:
;Initialize SP
 MOV #.sfe STACK, R5
 ADD #1, R5
 MOV R5, SP

 MOV #2,res
 PUSH res
 ADD res, 0(SP)
 POP res ;res = 4
STOP:
 JMP $
.END

2) Assemble your source file to a relocatable object file using the MCA-430:

MCA430 –l –d MYPROG.MCA

The following files will be created:

MYPROG.MCO – Relocatable object file (input for the Linker)
MYPROG.LST – Listing file

3) Use the MCLINK Linker to obtain the resulting executable file:

MCLINK -F MI -m MYPROG.MCO

The following files will be created:

MYPROG.MCE – Executable file in the MicroCOSM-ST/Phyton format
MYPROG.HEX – Absolute object file for CODE memory in the Intel HEX-format
MYPROG.MAP – Map file

 11

 12

Chapter 1. Basic Conceptions
This chapter introduces such basic conceptions as address spaces, segments, modules, symbolic names,
and their attributes. They allow managing allocation of code and data in available physical memory,
checking operand type in instructions and detecting errors at assembly and link stages.

1.1. Introduction
The process of development of software for embedded systems undergoes several stages: writing the
source texts of a program; assembling/compiling the source texts into relocatable object code; and,
linking the set of relocatable object modules to obtain executable file for debugging and/or a file with
absolute object code for the target system.

Typically, programs are developed based on the modular approach, where functionally or logically
complete parts of the program are arranged as separate small modules. Small subprograms and modules
are easier to comprehend, design, and test than large programs. Modular approach has another benefit –
the opportunity to reuse in new projects documented and bug-free modules with necessary functions (e.g.,
functions for interacting with peripherals).

Selected relocatable object modules can be used to build libraries. Furthermore, some modules in a
library can be assigned the 'library' attribute. At link time, the modules with the 'library' attribute are
included in the resulting executable file only if the program contains references to code or data in those
modules.

Pure assembler projects contain only assembler modules. In mixed Assembler/C projects some functions
are written in C and some in assembler. In this case, assembly functions can be called from C modules
and vice versa.

Assembler modules contain processor op-code mnemonics followed by the instruction operands, which
are commonly represented by symbolic names. Symbolic names in MCA-430 are assigned a set of
attributes such as 'allocation', 'type', 'operand type', and 'relocatability', that enable the Assembler and
Linker to check whether these names are used correctly as operands in instructions. Code or data are
placed in segments. The Linker places segments in the address spaces that correspond to various types of
physical memory in the embedded system (ROM, RAM, Flash, EEPROM, etc).

The MCLINK Linker links input object modules, adding the library modules, if necessary. It can generate
the executable files in the following formats:

§ Executable file with code and debugging information in the MicroCOSM-ST/Phyton format
(*.MCE)

§ Absolute object file in the Intel HEX format for CODE memory (*.HEX)

These files can be used for debugging in the Integrated Development Environments for embedded
systems. MCE-files contain additional debugging information, which provides extra functionality when
debugging is made in Phyton IDE.

1.2. Modules
The program being developed is often divided into functional units or modules, each accomplishing
certain tasks. Every module can contain both executable code and necessary data. The data and labels that
need to be visible in other modules are declared as public. Accordingly, modules can contain external
references designating names declared as public in other modules.

At the first – assembling/compiling – stage, source text in every module is processed individually by the
Assembler/Compiler and relocatable object modules are generated. At this stage, external references are
not resolved. At the second stage, all relocatable modules are processed by the Linker; the external
references are resolved, addresses are adjusted, and all relocatable modules are merged into the resulting
absolute object file. Such method of processing of the source texts is called separate compilation.

 13

It is possible to use the same symbolic names in different modules to identify different data or labels (so-
called name hiding). For example, a variable COUNTER may be used in one module as a counter of
bytes received through serial communication link, and also may be used in another module for counting
the bytes transmitted. In this case, variables identified by COUNTER are different in different modules.
These variables are sometimes called local variables in a module.

Due to separate compilation, the whole program does not need not to be re-compiled after changes are
introduced in one or several modules. It is necessary to recompile only the modules that were changed.
After recompilation, all modules again need to be processed by the Linker. This saves time when a large
program is developed.

If a program is divided to functionally independent and documented modules, the following advantages
are gained:

§ Executable code and data is hidden inside the modules, which reduces the possibility of "induced"

errors.
§ If it is necessary to introduce changes into a structured program, the scope for making the

corrections is limited to single modules, not the whole source text.
§ The modules can be used in a new project.

In a program written in a high-level language (e.g. C) every source text file is a module.

In assembler program the source text within one file can be divided into several modules using special
Assembler directives. Thus, an object file generated by Assembler may contain multiple modules.

There are three types of MCA-430 modules: program, library, and low-priority library modules. While
the program modules are always linked to the resulting file unconditionally, the library modules are
linked only when they contain public names that can resolve external references from other modules.
Low-priority modules are linked last and only if they can resolve references yet unresolved by the usual
library modules. For detailed description of type of modules supported by the MCA-430 Assembler, see
Chapter 4. MCLIB Librarian.

1.3. Address Spaces
The architecture of many embedded systems provides access to separated address spaces, which may
have specific layouts. The MSP430 design on the contrary, is notable for its all memory types mapped
into the common 64K address area. All of the MSP430 microprocessors have the RAM for storing
modifiable data and either the ROM (or One Time Programmable memory, OTP) or Flash (or Multiple
Time Programmable, MTP) memory for storing program code and constant/fixed data. Various chip
versions can have different sizes of RAM and ROM/Flash memory.

Two address spaces – CODE (for ROM or Flash memory) and DATA (for RAM) – represent the
MSP430 memory layout. The MCLINK Linker places segments with code and data at specific addresses
in these address spaces using the ‘allocation’ attribute.

1.3.1. Address Space ‘Allocation’ Attribute
Each address space, as well as each segment, has an attribute called allocation. The Linker sets up two
address spaces with allocations code and data, which are listed below:

Address Space Name Maximum Allowed

Address Range
Allocation Default Address Range

CODE 200h…0FFFFh code 0FC00h..0FFFFh

DATA 000h…0FBFFh data 0..280h (200h + 128 locations)

The default address ranges presume the configuration with 1K ROM and 128 byte RAM.

 14

CODE address space is associated with the physical ROM or Flash (whichever is present). This address
space is intended for storing code and constant data. Note, that the addresses 0FFE0h–0FFFFh should be
reserved for interrupt vectors. See for details Setting Interrupt Vectors section in Chapter 2.

DATA address space is associated with the physical RAM that is used to store data modified at run time.
Note that the 0-1FFh address range is used to map SFRs and peripheral module registers. This address
range is reserved automatically when you include the appropriate file containing the SFRs and peripheral
modules definitions. See for details SFRs and Peripheral Module Registers section in Chapter 2.

Changing the Size of Address Spaces
The sizes of address spaces can be redefined to correspond to the actual memory layout of the selected
MSP430 device. You can specify/change the address range for each address space using the -A Linker
option. The address ranges of the redefined address spaces must not overlap; otherwise, the Linker will
produce an error message. If the sizes of address spaces are not specified with the -A Linker option, the
Linker uses the default address ranges mentioned above. Banking, or declaration of new address spaces,
is not allowed either for code or for data allocation.

In IDE the adjustment of the address space boundaries is made automatically after selection of the
required MSP430 device. To see how to set custom memory sizes in the IDE, please refer to IDE Online
Help.

If you run the MCLINK from the command line, use one of the supplied Linker response files . You can
also generate the response file for MCLINK from IDE and use it as a template. Please refer to IDE
Online Help.

The following example demonstrates how to manually redefine address spaces. Assume your system is
equipped with 256 bytes of RAM and 8K of ROM (e.g., the MSP430C1331). Then, you should add the
following options to the Linker response file (or the command line) to specify this memory layout:

-A (data)DATA(0h-2FFh) #modifiable data will be placed
 #in the range 200-2FFh (0-1FFh is
 #reserved for SFR's and
 #peripheral modules)

-A (code)CODE(DFFFh-FFFFh)#code and fixed data will be placed
 #in the range DFFFh-FFFFh

1.4. Segments
 Segment is a separate memory area for code or data within an address space. Each segment has a name
assigned by the user. A segment can be either absolute or relocatable/overlay, and has ‘allocation’
attribute. In a module, code and data may be allocated in several segments. The Linker processes
relocatable segments defined with the same name in different modules as parts of the same segment, i.e.
combines them into one contiguous block.

1.4.1. Segment Types
There are three types of segments: absolute, relocatable, and overlay segments. The segment type is
specified by one of three directives .ASEG, .RSEG, or .OSEG used for segment declaration.

Code or data located in absolute segments are bound to absolute physical addresses already in the source
text. When a name is defined in an absolute segment, the values assigned to this name will not be
modified by the Linker.

The addresses of relocatable and overlay segments are adjusted by the Linker. The Assembler simply
calculates the addresses of code and data based on the displacement from the origin of the fragment of
segment located in a given module. At link time, the total size of the segment is calculated and the
segment is allocated starting from a particular physical address. Given this starting address the absolute
addresses for code and data are computed.

 15

Binding of code and data located in the overlay segments is also performed at link time only. The
Assembler determines the location of code or data in a similar way to relocatable segments. The segment
declared in the input file as overlay is processed by the Linker similar to relocatable segment, except for
the following: (1) the Linker sets the size of an overlay segment equal to the size of the largest fragment
of this segment; (2) the Linker places all fragments of a particular overlay segment starting from the same
physical address.

Note, when an absolute segment is declared, the Assembler generates an information in the relocatable
object file to prevent the Linker from placing relocatable or overlay segments in that address range. Thus,
the user does not need to keep relocatable or overlay segments from overlapping with the absolute ones.
However, if two or more absolute segments are declared within one address space and their address
ranges intersect then it is the user’s responsibility to track overlapping of the fragments of the code and to
prevent that.

1.4.2. Segment ‘Allocation’ Attribute
If a new segment is declared in a module, the 'allocation' attribute must be specified in the declaration
statement. Code and initial (non-modifiable) data should be placed in code segments (with the code
allocation attribute). Memory locations for modifiable data should be reserved in data segments. The
following are the 'allocation' attributes and the allowable access methods:

Memory Type Allocation Attribute Allowable Access Method
code memory (ROM/Flash) code Fetching code, word/byte instructions

data memory (RAM) data Word/byte instructions, fetching code*
* In data segment declared with extended segment declaration directive format. See section Segment

Declaration and Selection in Assembler Directives, Chapter 2.

Knowing the memory type of each operand the Assembler can check that the data is accessed correctly.
The 'allocation' attribute is assigned to every operand in the MCA-430, which is achieved by the
following mechanism: code and data are placed in segments and the 'allocation' attribute of the segment is
automatically assigned to every identifier declared in that segment.

1.4.3. Allocating Segments in Address Spaces
The Linker can automatically allocate segments in the address spaces. The segments with allocation data
fall into the DATA address space, i.e. in the RAM. The segments with allocation code fall into the CODE
address space, i.e. in the ROM/Flash.

If a data segment is declared using the extended format, the Linker places all code from that segment in
the CODE address space, whereas addresses of all names and labels are adjusted to the DATA address
space. See for details Segment Declaration and Selection section in Chapter 2.

1.5. Symbolic Names

1.5.1. Local, External and Public Names
Names defined within a module can be divided into two categories: local names, which should only be
used in that particular module, and public names specified using the .PUBLIC directive. References to
public names defined in other modules are supported. Such references are called external references.
External names used for external references should be declared with the .EXTRNx directives. Public
names can be referenced from other modules, where they will be external names, and therefore public
names must be unique in the project.

The same local names can be used to identify various objects in different modules, without conflicting.
Furthermore, MCA-430 allows using local names/labels in functions, defined with the .FUNC directive,
and local names in macros .

 16

For details, see sections Functions and Macro Tools in Chapter 2. MCA-430 Assembler.

1.5.2. ‘Relocatability’ Attribute
The relocatability attribute tells the Linker whether it needs to determine the value of a name at link
time. This value is normally an address in the memory. If the name type is absolute – the 'relocatability'
attribute is ABS – then its value is evaluated at assembly time and the Linker does not need to evaluate it.
If the name is relocatable – the 'relocatability' attribute is REL or EXT – then its value is unknown at
assembly time and it must be evaluated by the Linker.

The relocatability attribute of the names defined in absolute segments and names of the numeric constants
is ABS. Names defined in relocatable segments have the REL relocatability attribute. External names
have the EXT relocatability attribute. Every expression, not only names, has relocatability attribute. For
example, numeric constants have the ABS relocatability attribute.

See also: Type Conversion and Checking in Expressions section in Chapter 2. MCA-430 Assembler.

The relocatability attribute may accept the following values:

Value Description
ABS
REL
EXT
SEG
SFB
SFE

Absolute value
Relocatable value
External value
Segment (for segments only)
Start address of a segment (result of the .SFB operator)
End address of a segment (result of the .SFE operator)

1.5.3. Name Types and ‘Type’ Attribute
Every symbolic name defined in a program has the type attribute. The following is a list of the available
types:

Type Numeric Value MCA-430 Constant Description
nothing 0 - undefined type
void 2 .VOID only for compatibility with C
char 4 .CHAR 8-bit, signed integer
unsigned char 5 .UCHAR 8-bit, unsigned integer
int 8 .INT 16-bit, signed integer
unsigned int 9 .UINT 16-bit, unsigned integer
long 10 .LONG 32-bit, signed integer
unsigned long 11 .ULONG 32-bit, unsigned integer
float 12 .FLOAT 32-bit, floating-point number

Assembler types are used for the following purposes:

§ Information about the type of a variable is used in debugging. The Debugger, knowing the size

and sign of a variable, will show the right value in the correct format upon request. For example,
if a variable is defined with the .DSC directive, which makes it an 8-bit signed number, the
Debugger will format and show its value exactly as an 8-bit signed number.

§ Assigning of type attributes to names in assembly programs is necessary for linking assembler
and C modules to one program.

Note: C allows deriving of new types from the basic types; new type may be a synonym of another type
(typedef) or a pointer, array, structure, union, etc.

 17

The Linker checks whether type attributes of public and external names coincide. If, for instance, the
variable VAR in one module is of type .CHAR and is declared with the .PUBLIC directive and another
module references this variable with the .EXTRNB directive, then in the second module this variable will
be of the .UCHAR type, which will force the Linker to generate a warning message. Type checking can
be disabled with the Linker -w option.

The .DCx, .DSx, .LABELx, .EXTRNx assembler directives automatically assign type attributes to data
being declared (see section Assembler Directives in Chapter 2. MCA-430 Assembler for details).

In fact, every operand or name has the 'type' attribute. For example, a name defined with the .DB2
directive will be of type nothing (0).

1.5.4. ‘Operand Type’ Attribute
The operand type attribute is used by the Assembler to check whether the instruction code and the size
and/or alignment of operands match.

Operand Type Size Alignment
BYTE
WORD
DWORD
UNTYPED

8 bit
16 bit
32 bit
length is unknown

byte
word
word
unknown

When a name has an operand type assigned to it, the Assembler will perform type checking in
instructions. This can be helpful for detecting some errors. A typical example is a missing "#" before a
constant:

mov 256, R5 ;warnings here – UNTYPED operand without allocation
mov #256,R5 ;correct, if a number was to be used

In the above example the 'operand type' attribute of the operand is UNTYPED, which will cause the
Assembler to produce a warning message (additional warning will be connected with the absence of
allocation attribute). It is not recommended to have UNTYPED names/numeric values used as memory
addresses in instructions operating with data. For instance, to access SFRs and peripheral modules, use
the names defined in the supplied include files.Operand type checking can be disabled with the -a
command line option (see Appendix C. MCA-430 Command Line Interface).

Using the .DCx, .DSx, .LABELx, and .EXTRNx assembler directives automatically assigns types to data
defined by them. In addition, you can use special directives to declare the operand type, such as .BYTE,
.WORD, .DWORD (see Assembler Directives section in Chapter 2. MCA-430 Assembler).

In fact, all operands and names have the 'operand type' attribute (numeric constants, for instance, have the
UNTYPED operand type). You can redefine the operand type of an expression with the .BYTE, .WORD,
.DWORD (see Assembler Operators section in Chapter 2. MCA-430 Assembler) and use the expression
as an operand in instruction.

Example:

 .RSEG _MyReg,reg
MyWord .dsw ;MyWord obtains WORD operand type
MyByte .dsb ;MyByte obtains BYTE operand type
MyArr .ds 5
 .RSEG _MyCode,code
mov MyArr,MyByte ;op-type mismatch for MyArr
mov MyArr+1,MyWord ;op-type mismatch for both operands
.byte MyArr ;now op-type of MyArr is BYTE
mov MyArr,MyByte ;ok

 18

mov MyArr+1,.byte MyWord ;ok: op-type of the 2nd operand is redefined
 ;with .byte operator

1.5.5. ‘Allocation’ Attribute
The allocation attribute lets the Assembler know which addressing mode is allowed when accessing a
memory location indicated by a symbolic name. The name defined as an address in a segment inherits the
allocation attribute of the segment.

The 'allocation' attributes of external names are specified in the .EXTRNx directive. The Linker checks
whether the allocation attribute of the external name matches allocation attribute of the corresponding
public name.

The 'allocation' attribute is not assigned to a name which is not associated with any address (e.g., name
declared as a numeric constant using the .EQU directives, etc.). For details, see Assembler Directives
section in Chapter 2. MCA-430 Assembler.

 19

Chapter 2. MCA-430 Assembler

In this chapter, you will find MCA-430 Assembler specific information, including usage of expressions,
operators, assembler directives, special characters, macros and functions, as well as MSP430 specifics
support.

2.1. Command Line Format
Usage:

MCA430.EXE [options] source_file1 [source_file2 […]]

Source_file is a file with assembler source text. Options are any of MCA-430 options. Options
each start with the "-" (minus character), followed by a flag letter which selects the option. Options may
be given in any order or omitted entirely. The flag letter may be followed by additional text relating to the
option. Options are separated from each other and from the source name by spaces. Options are case
sensitive.

If the source filename has the standard .MCA extension then the extension can be omitted.

The following command line options are accepted by the MCA-430:

Option Description
-Ipath
-N
-u
-d
-a
-r
-l
-Jpath
-Lpath
-x
-c
-g
-e
-w
-p
-Pnn
-Enn
-Wnn
-b
-s
-h or -?
@filename

Search for include files in the specified directories
Insert file at the beginning of the source file
Ignore character case
Generate debugging information
Disable instruction operand type checking
Disable detection of jumps made to the data memory
Generate listing file
Place object file in the specified directory
Place listing file in the specified directory
Include cross-reference table in the listing
Include false conditionals in the listing
Include macro definitions in the listing
Include macro expansions in the listing
"Wide" listing output
Split listing into 40 line pages
Split listing into pages of the specified length
Terminate assembling after n errors
Display not more than n warnings
Produce beep if error is detected
Display the number of processed lines
Display a brief description of options
Append a response file to the command line

2.2. Assembler Syntax
Assembler syntax is a set of rules that a developer must follow when writing source text of a program.
Improperly written source text will cause error messages produced by the Assembler.

 20

2.2.1. Vocabulary and Grammar
As any other language, the assembly language has vocabulary and grammar. The vocabulary is a set of
keywords used in expressions, such as terms and tokens, and the grammar is a set of rules defining the
ways to combine terms to express ideas (notions) and actions.

Assembly language source line is the basic assembly language unit. The source line may contain
assembler mnemonics, directives and/or comments.

2.2.2. Lexical Elements
Lexical elements in Assembler are the basic language elements such as names and labels, keywords,
numbers, and character strings.

 Identifiers are symbolic names defined by the user and are used in the source text to specify addresses,
constants, macros, and so on. The identifier is a combination of alphabetic characters (either upper or
lower case), digits, question marks "?", and underscore characters "_". The following restrictions apply to
the identifiers:

§ Identifier length can not exceed 255 characters.
§ Identifiers are case sensitive (unless the -u command line option is specified or an appropriate

option is set in the IDE). For example, BUFFER and buffer are different identifiers.
§ Identifier may not contain any delimiters or spaces.
§ Identifier may not begin with a digit.

The keywords are predefined identifiers and have a special meaning in the Assembler. Keywords are
used to denote predefined names such as:

§ mnemonics of MSP430 instructions (such as ADD, MOV, and so on);
§ microprocessor registers (R0..R15, PC, SP, and SR);
§ names of allocation attributes (code, data).

The keywords are not case sensitive.

You can use custom names to designate variables, labels, macros, functions, etc., in your program.

 Label is a name that is used to mark a certain location in the program. Labels can be used to organize
jumps in the program flow without the need to manually calculate the addresses for jump destinations.

Assembler can operate with integer numbers. Numbers in Assembler can be in decimal, hexadecimal,
octal, and binary numerical notation.

 Character string is a sequence of ASCII characters embraced in single quotes ('). To use a quotation
mark as one of the characters in a character string, it should be written twice (''). Maximum allowed
character string length is 255 characters.

Note, unlike in C, character strings in Assembler do not include the terminating null character. If you
need a null-terminated string, you should insert the null byte at the end of the string.

2.2.3. Assembler Statements
A program in Assembler is a set of statements, each written in a separate line:

statement
statement
...
statement

 21

The following basic rules apply to the Assembler statements:

§ Assembler does not support line splitting
§ Every line should end with a line feed and a carriage return symbols
§ Spaces may be used anywhere in the line except inside the tokens
§ Source text may contain empty lines
§ Statement with a label can only be placed inside a segment

2.2.3. 1. Symbols and Delimiters
The source text of an assembler program may contain alphabetic characters, digits, symbols, and
delimiters. All symbols are allowed in comments. Delimiters are used to separate terms (tokens) in the
Assembler expressions. Below is the list of delimiters with brief descriptions:

Symbol Code Name Description
SPACE 20H Space Separates fields, identifiers
HTAB 09H Horizontal tabulation Same as the above
' - Single quote Delimits character strings
. - Period Directive/operator prefix, period

operator
, - Comma Separates arguments
; - Semicolon Starts comments
: - Colon Designates labels
" - Quote Floating-point number prefix
() - Parentheses Delimits expressions

2.2.3. 2. Source Line Format
Assembler source text line may consist of a label, operation, operands, and comments.

Syntax:

[label:] [<operation> [operands]] [;comments] <CR,LF>
or

name <operation> [operands] [;comments] <CR,LF>

Label/Name

[label:]
or

name

This field contains either a label or a name. Label ends with a colon and can be placed in a separate line.
Names can be put only before instruction mnemonics, macro calls and Assembler directives.

Operation

<operation>

This field contains an instruction mnemonic, a directive, or a macro name.

Operand

[operands]

 22

This field contains operands of the operation. The contents and syntax of this field may vary according to
the operation specified earlier in the line.

Comments

[;comments]

Serves for making comments for any line in the program text. Comments are ignored by the Assembler
but are included in the listing file. Comments field should start with a semicolon (;). Any text following
the semicolon is comments.

2.2.3. 3. Assembler Directives
 Assembler directives are used to control the assembly process, declare program constants and define
constants in the ROM, reserve space for variables in the RAM, define and switch segments, change the
location counter, etc.

The syntax of a directive statement is the following:

[name] <directive> [parameters] [;comments]
or

<directive> name [;comments]

Directives are reserved words. All directives start with a period and are not case sensitive.

2.2.3. 4. Forward and Backward References
Referencing a name/label that is defined further in the program is called a forward reference. If a name is
first defined and then used then it is a backward reference. Examples:

Backward Reference Forward Reference

 MOV a,#5
LOOP:
 DEC a
 CP a,#0
 JNZ LOOP

 AND b,#0F0h
 JNZ SKIP
 MOV b,#0
 SKIP:
 …

Certain restrictions apply to usage of forward references in some expressions. Any such restrictions are
described when they apply to an expression.

2.3. Assembler Expressions
Expression is a sequence of operands and operators. Expressions that can be evaluated at assembly time
are called absolute expressions. Expressions where the result can not be known until linking are called
relocatable expressions.

There are constant and address expressions. Constant expressions are evaluated by the Assembler at
assembly time using 32-bit arithmetic. Numbers, character strings, and named constants are the simplest
constant expressions. If a constant expression is simply a number, it can not exceed 232-1, otherwise, the
Assembler will generate the "out of range" error message. If a constant expression is a compound
expression and the result exceeds 232-1, the higher bits are ignored. Values of the address expressions are
addresses in the memory. Address expressions are evaluated either by the Assembler or by the Linker.
The simplest address expressions are labels, program counter, and segment names.

 23

Expression is a syntax structure, which can be:

§ A single basic operand (no operators, the simplest form of expression)
§ An unary operator (applied to an expression)
§ A binary operator (applied to a couple of expressions)

2.3.1. Operands
The following are the basic operands (simplest expressions):

§ Numbers
§ Character strings
§ User defined names
§ $ symbol (Program Counter)
§ Segment names

2.3.1. 1. Numeric Constants
Numeric constant (or number) is a sequence of digits ending with a suffix specifying base. Hexadecimal
numbers should always start with a digit. Thus, if a hexadecimal number starts with a letter you should
add a leading zero at the beginning. For instance, ABCDh is written as 0ABCDh.

Number Radix Digits Suffix
Binary 2 01 B
Octal 8 01234567 O
Decimal 10 0123456789 D* (optional)
Hexadecimal 16 0123456789ABCDEF H
* Suffix is optional – decimal format is default

Assembler stores all numeric constants in the memory as 32-bit integer values, so they must fit in 32 bits.
Floating-point number format is also supported. For example, you can write using the floating point
number prefix (see Symbols and Delimiters section earlier in this chapter): "3.2645E+4. Floating-
point numbers are stored as 32-bit numbers, in accordance with the ANSI/IEEE 754-1895 standard for
real single-precision normalized numbers.

Note, 32-bit floating point numbers can not be used in arithmetic expressions. Such numbers can only be
used for memory initialization (providing the initial values for variables and constants in tables) in the
programs containing single-precision real number calculations that comply with the ANSI/IEEE 754-
1895 standard.

Numeric constant attributes:

Allocation Operand Type Type Relocatability
<none> UNTYPED Nothing ABS

2.3.1. 2. Character Strings
MCA-430 Assembler allows using ASCII characters in expression to generate a numerical value. If a
character string is 4 characters or less, it can be used as a constant in arithmetic expressions. In this case,
the value of the string will be the number composed of the ASCII codes of the characters in the string. For
example, the value of string '1234' becomes 031323334h. The rightmost symbol of the string will be
placed in the least significant byte (byte with the lowest address).

If a character string contains more than 4 characters then it may be used only in statements with directives
(for example, .DCx or .ERROR) or in comparison operations (see Relational Operators section in
Assembler Operators).

 24

Attributes of the character strings (not longer than 4 characters):

Allocation Operand Type Type Relocatability
<none> UNTYPED nothing ABS

2.3.1. 3. User Defined Constants
You can use your own names to describe constants. The constant name should be defined with the
directive .EQU or .DEFINE. Constants defined with the .DEFINE directive retain their values across all
modules in the source file, while the constants defined with the .EQU directive retain their values only
within the current module. There are also predefined Assembler constants. The full list of the can be
found in the Predefined Constants section in this chapter. Examples of using constants:

Blue .DEFINE 2 ; Blue equals to 2
Green .DEFINE 3 ; Green equals to 3
K .EQU 5 ; K equals to 5
MOV #(K+2), R5 ; 7 is loaded in R5

For details on directives, see section Assembler Directives further in this chapter.

2.3.1. 4. Labels/Names
A label is an address expression. Its value is the address of labeled location or the address of the variable
in the memory.

2.3.1. 5. Program Counter
When the Assembler generates code, it uses its internal variable to trace addresses. This variable is called
program counter (location counter). The current program counter value is always stored in this variable,
which can be accessed by the $ symbol. The value of this internal variable is equal to the value of
program counter BEFORE the current line is assembled.

Each segment has its own program counter and the Assembler uses program counter of the active
(current) segment as the current counter.

Because a segment can be either relocatable or absolute, the value returned by the $ symbol has either
ABS or REL relocatability attribute respectively.

Attributes of the value designated by the $ symbol:

Allocation Operand Type Type Relocatability
Obtained from the current
segment

UNTYPED nothing Obtained from the
current segment

2.3.1. 6. Segment Names
The value of a segment name used in an expression is equal to the origin (absolute address) of the
segment fragment in the current module. The use of segment names in expressions is restricted.

Segment name value attributes:

Allocation Operand Type Type Relocatability
Obtained from segment - - SEG

 25

2.3.2. Type Conversion and Checking in Expressions
Every operand in an expression has a set of attributes:

§ Allocation
§ Operand type
§ Type
§ Relocatability

When an expression is processed the operand attributes are checked for compatibility and are converted
according to a set of rules listed below.

Note that the 'type' attributes of operands are not checked, and the resulting 'type' attribute is always
nothing (i.e. 0).

If the result of evaluated expression has the 'relocatability' attribute ABS then the expression is called
absolute. Otherwise, the expression is called relocatable. If not explicitly specified otherwise in the
operation description, the following type checking and conversion rules are applied.

2.3.2. 1. Binary Operations
 Allocation attributes of both operands should the same if assigned. If either of the operands has no
allocation assigned, the result obtains the allocation from the other operand. If both operands have no
allocation then the result also has no allocation. In a special case of subtraction of two relocatable
operands declared in one segment, the result has no allocation, since it is a numeric value.

 Operand type attributes of the operands should either be the same, or one of the operands should be
UNTYPED. If operand types are the same, the result will have the same type as the operands. If operand
types are not the same and one of the operands is UNTYPED then the result will obtain the operand type
of another operand. If operand types are not the same and neither of the operands is UNTYPED then the
Assembler will generate a warning message and the result will be UNTYPED.

 Relocatability attribute is checked and converted according to the following procedure. All operations
are allowed with operands that have the ABS relocatability. The result of such operations will also have
the relocatability ABS.

The following binary operations are allowed on operands with the REL relocatability:
§ addition to an ABS relocatability operand (the result is REL),
§ subtraction of an ABS relocatability operand from a REL relocatability operand (the result is

REL); and
§ subtraction of two REL operands declared in the same segment (the result is ABS).

No other binary operations with the REL relocatability operands are allowed.

Note, non-ABS operands can not be subtracted from the ABS operands.

The following binary operations are allowed on operands with the EXT relocatability:
§ addition to an ABS relocatability operand (the result is EXT); and
§ subtraction of an ABS relocatability operand from an EXT relocatability operand (the result is

EXT).

Other binary operations with the EXT relocatability operands are not allowed.

The operands with the SEG relocatability (segment names) can be added to the ABS operands. The ABS
operands can be subtracted from the SEG operands. In both cases, the 'relocatability' attributes of the
results are SEG. Other binary operations are not allowed.

 26

The following binary operations are allowed for operands with relocatability SFB/SFE:
§ addition to an ABS relocatability operand (the result relocatability is SFB or SFE); and
§ subtraction of an ABS relocatability operand from a SFB relocatability operand (result is SFB) or

from a SFE relocatability operand (the result is SFE).

Other binary operations with SFB/SFE relocatability operands are not allowed.

2.3.2. 2. Unary Operations
 Allocation attribute of the operand is transferred to the result of the operation.

 Operand type attribute of the result is the same as the operand type of the operand, except for the special
operand type conversion operations (.BYTE, etc.).

 Relocatability attribute is checked and converted according to the following rules. The .SFB and .SFE
operators are applicable only to the operands with the relocatability SEG (segment names).
'Relocatability' attribute of the result is .SFB or .SFE respectively. Other unary operations are prohibited
for the SEG relocatability operands.

The result of a unary operator applied to an ABS operand will have the ABS 'relocatability' attribute.

In byte/word extraction operations (with the .HWRD, .LWRD, .HIGH, .LOW, .BYTE3, and .BYTE4
operators) the 'relocatability' attribute of the result is inherited from the operand and no further
arithmetic operations can be made with this result.

2.3.3. Predefined Variables
Predefined variables are values that are used to get information about some parameters in the module.

2.3.3. 1. .UPPERCASEONLYMODE
The variable .UPPERCASEONLYMODE is equal to .TRUE (-1) if the Assembler is set to make no
distinction between the lower and upper case letters in identifiers, otherwise it is equal to .FALSE (0).
The MCA-430 Assembler is case sensitive by default. You can override this setting by the –u command
line option (to see how to use this option in the IDE, please refer to IDE Online Help).

2.3.4. Predefined Constants
The following is the list of predefined Assembler constants:

Constant Value Purpose
.TRUE -1 (0FFFFFFFFH) Logical True
.FALSE 0 Logical False
.NOCHECK 1 Type definition
.VOID 2 C-compatible type definition
.CHAR 4 Type definition
.UCHAR 5 Type definition
.INT 8 Type definition
.UINT 9 Type definition
.LONG 10 Type definition
.ULONG 11 Type definition
.FLOAT 12 Type definition
.ELLIPSIS 17 C-compatible type definition
.VOID_PTR 100 C-compatible type definition
.CHAR_PTR 101 C-compatible type definition

 27

.UCHAR_PTR 102 C-compatible type definition

.INT_PTR 103 C-compatible type definition

.UINT_PTR 104 C-compatible type definition

.LONG_PTR 105 C-compatible type definition

.ULONG_PTR 106 C-compatible type definition

.FLOAT_PTR 107 C-compatible type definition

2.4. Assembler Operators
MCA-430 Assembler provides a set of operators that are described below.

2.4.1. Addition and Subtraction
Operator Description Syntax
+ Arithmetic addition operand1 + operand2
- Arithmetic subtraction operand1 - operand2

2.4.2. Multiplication and Division

Operator Description Syntax
* Multiplication operand1 * operand2
/ Unsigned division operand1 / operand2
.MOD Unsigned remainder selection operand1 .MOD operand2
.IDIV Signed division operand1 .IDIV operand2
.IMOD Signed remainder selection operand1 .IMOD operand2

2.4.3. Shift Operators

Operator Description Syntax
.SHL Arithmetic left shift .SHL operand
.SHR Arithmetic right shift .SHR operand
.SHRL Logical right shift .SHRL operand

2.4.4. Bitwise Operators

Operator Description Syntax
- Two's complement - operand
~ or .INV One's complement .INV operand
.NOT Logical negation* .NOT operand
& or .AND Bitwise logical AND operand1 & operand 2

operand1 .AND operand2
| or .OR Bitwise logical OR operand1 | operand 2
^ or .XOR Bitwise logical XOR operand1 ^ operand 2
* The result of the logical negation operator .NOT is .TRUE (-1) if the value of its operand is

equal to 0, and .FALSE (0) otherwise.

 28

2.4.5. Relational Operators
Syntax:

expression <relational_operator> expression

Operator Description
<, .LT signed LESS THAN
<=, .LE signed LESS THAN OR EQUAL
>, .GT signed GREATER THAN
>=, .GE signed GREATER THAN OR EQUAL
.ULT unsigned LESS THAN
.UGT unsigned GREATER THAN
==, .EQ EQUAL
<>, .NE NOT EQUAL

Relational operations return .TRUE (-1, 0FFFFFFFFh) if the result of comparison is true, and .FALSE
(0) if the result of the comparison is false. Your can compare not only numbers but also strings, even if
they are longer than 4 characters. In this case:

§ Strings are equal, if they are fully identical
§ A string is greater than another string if the first one is farther from the top of the list arranged in

alphabetical order. For example:

'ABCDEFG' is greater than 'ABCD'
'ABCCCCC' is less than 'ABCD'

2.4.6. Byte/Word Extraction Operators
Syntax:

.HWRD expression

.LWRD expression

.HIGH expression

.LOW expression

.BYTE3 expression

.BYTE4 expression

These unary operators are byte/word extraction operators. The return values are the following:

Operator Description
.HWRD
.LWRD
.HIGH
.LOW
.BYTE3
.BYTE4

High word of the operand
Low word of the operand
High byte of the operand's low word
Low byte of the operand's low word
Low byte of the operand's high word
High byte of the operand's high word

There are some restrictions that apply to using the result of these operations. For details, see section Type
Conversion and Checking in Expressions in this chapter.

 29

2.4.7. Setting Operand Type of Expression
Syntax:

.BYTE expression

.WORD expression

.DWORD expression

.UNTYPED expression

These operators set the 'operand type' attribute of an expression. The operators enable type checking for
the expression specified when this expression is used as operand in Assembler instructions. The
following operand type attributes are set to the expressions:

Operator Operand Type Attribute
.BYTE
.WORD
.DWORD
.UNTYPED

BYTE
WORD
DWORD
UNTYPED

Example:

.EXTRNW (data) VarW

.EXTRNB (data) VarB

.RSEG MyCode, code

;copying VarB to lower byte of VarW:
mov.b VarB, VarW ;warning
mov.b VarB, .BYTE VarW ;ok
sxt VarW;

2.4.8. Miscellaneous Operators

2.4.8. 1. .SFB, .SFE
Syntax:

.SFB segment_name

.SFE segment_name

The .SFB and .SFE unary operators can be applied only to the segment names defined in the current
module. .SFB returns the start address of the segment and .SFE returns the end address of the segment.
The result of the expression is estimated at link time. There are strict limitations applied to using these
expressions results. For details, see Type Conversion and Checking in Expressions, Chapter 2.

2.4.8. 2. .OFFSET
Syntax:

.OFFSET expression

Returns the displacement of the operand, residing in a relocatable/overlay segment, from the origin of this
segment in the current module. Expression is a relocatable, non-external expression. Forward references
are forbidden. The operation result is a numeric value of the UNTYPED operand type.

2.4.8. 3. .ALLOCATION
Syntax:

.ALLOCATION expression

 30

Returns a numeric value corresponding to the allocation attribute of the operand. Forward references are
not allowed. This operator is useful in macros for conditional code generation. The operator has very low
precedence, so the parentheses are often required:

.IF (.ALLOCATION FOO) .EQ 2

This operator can return the following values:

Allocation Returned Value
<none> 0

code 1

data 2

Example:

.EXTRNB(data) foo

.RSEG SegCode,code
zoo:
koo .SET 2
qq .SET (.ALLOCATION koo) ;0
qq .SET (.ALLOCATION zoo) ;1
qq .SET (.ALLOCATION foo) ;2
qq .SET (.ALLOCATION noo) ;Error, forward reference
noo .SET 1

2.4.8. 4. .OPTYPE
Syntax:

.OPTYPE expression

Returns a numeric value corresponding to the operand type of the expression. Forward references are not
allowed. This operator is helpful in macros for conditional code generation. This operator priority is very
low, so the parentheses are often necessary:

.IF (.OPTYPE foo) .EQ 2

The values returned by the operator are the following:

Operand Type Returned Value
UNTYPED 0
BYTE 1
WORD 2
DWORD 3

Example:

.RSEG MyData,data

.EXTRNB(data) boo ;define external unsigned char boo

.EXTRND(data) poo ;define external unsigned long poo
zoo .DSI ;define integer (signed word) zoo
too: ;define untyped name too
aa = .OPTYPE too ;optype returns 0
aa = .OPTYPE boo ;optype returns 1
aa = .OPTYPE zoo ;optype returns 2
aa = .OPTYPE poo ;optype returns 3
aa = .OPTYPE noo ;ERROR - forward reference

 31

noo .SET 2 ;define untyped name noo
.END

2.4.8. 5. .TYPE
Syntax:

.TYPE name

Returns the number corresponding to the type of the name. Forward references are not allowed. The
operand of this unary operator cannot be an expression. The returned values are the following:

Value Type MCA-430 Constant Description
 0 nothing - undefined type
 4 char .CHAR 8-bit, signed integer
 5 unsigned char .UCHAR 8-bit, unsigned integer
 8 int .INT 16-bit, signed integer
 9 unsigned int .UINT 16-bit, unsigned integer
 10 long .LONG 32-bit, signed integer
 11 unsigned long .ULONG 32-bit, unsigned integer
 12 float .FLOAT 32-bit, floating-point number

2.4.8. 6. .DEFINED
Syntax:

.DEFINED name

Returns .TRUE (-1) if name is defined and .FALSE (0) otherwise. Forward references always return
.FALSE. External reference returns .FALSE if the external name was not declared earlier in the program.

Example:

.IF (.NOT .DEFINED MyFunc)
 .EXTRNF MyFunc
.ENDIF

2.4.8. 7. .DATE
Syntax:

.DATE absolute_expression

Returns a numeric value. The meaning of the value depends on the argument.

Argument Result Value
1
2
3
4
5
6

current time (seconds)
current time (minutes)
current time (hours)
current date (day)
current date (month)
current date (year)

0-59
0-59
0-23
1-31
1-12
year minus 1900

Argument of the .DATE operator should be an absolute expression within the 1-6 range.

 32

2.4.9. Operator Precedence
The following table lists the operators in the order of priority. Operators with highest priority (1) are
evaluated first. If there is more than one operator with a certain priority, the leftmost operator is evaluated
first followed by each subsequent operator with the same priority.

Operator Description Priority
- Two's complement (arithmetic inversion) 1
~ or .INV One's complement (bitwise inversion) 1
.NOT Logical negation 1
.HWRD High word extraction 1
.LWRD Low word extraction 1
.HIGH High byte of low word extraction 1
.LOW Low byte extraction 1
.BYTE3 Low byte of high word extraction 1
.BYTE4 High byte of high word extraction 1
.SFB Returns start address of a segment 1
.SFE Returns end address of a segment 1
.DATE Returns current date 1
.WORD Changes operand type to WORD 1
.BYTE Changes operand type to BYTE 1
.DWORD Changes operand type to DWORD 1
.UNTYPED Changes operand type to UNTYPED 1
.DEFINED Returns 0, if the name is undefined 1
.BLANK Returns 0, if macro parameter is specified 1
.PARM Returns the text of actual argument 1
.TYPE Returns type of operand 1
* Multiplication 2
/ Unsigned division 2
.MOD Unsigned remainder selection 2
.IDIV Signed division 2
.IMOD Signed remainder selection 2
.SHL Left shift 2
.SHR Arithmetic right shift 2
.SHRL Logical right shift 2
+ Addition 3
- Subtraction 3
& or .AND Bitwise logical AND 4
| or .OR Bitwise logical OR 5
^ or .XOR Bitwise logical XOR 5
< or .LT Signed LESS THAN 6
<= or .LE Signed LESS THAN OR EQUAL 6
> or .GT Signed GREATER THAN 7
>= or .GE Signed GREATER THAN OR EQUAL TO 7
.ULT Unsigned LESS THAN 7

 33

.UGT Unsigned GREATER THAN 7
== or .EQ EQUAL TO 7
<> or .NE NOT EQUAL TO 7
.ALLOCATION Returns operand allocation attribute 8
.OPTYPE Returns operand type attribute of the operand 8

 34

2.5. Assembler Directives
In this section you will find the detailed description of MCA-430 directives including conditional
assembling and listing control directives. See also Appendix A. Assembler Directives Summary for
complete list of all Assembler directives.

2.5.1. Module Declaration

2.5.1. 1. .PMODULE, .LMODULE
Syntax:

.PMODULE module_name

.LMODULE module_name

Declares the beginning of a program or a library module. Module_name assigns the module name, under
which the module will be placed in the object file. The length of a module name may not exceed 255
symbols.

Note that in order to include modules into a library all the module names must be unique. Otherwise, the
MCLIB Librarian will produce the "duplicate module" error message. For details on MCLIB, refer to
Chapter 4. MCLIB Librarian.

.LMODULE defines a library module that will be linked to the program only if there are external
references to this module. .PMODULE defines a program module which, unlike a library module, is
always linked to the program.

The scope and accessibility of non-public identifiers and labels defined in the module are limited to this
module.

If the file contains the source text of one module only and there are no .LMODULE or .PMODULE
directives then only one program module will be generated as a result of translation. This module will
have the same name as the source file (path and extension are omitted).

2.5.1. 2. .LMODULE2
Syntax:

.LMODULE2 module_name

Declares the beginning of a low-priority library module. Other than that, this directive is the same as the
.LMODULE directive.

Low-priority library modules are scanned by the Linker after scanning the standard library modules.
Hence, a low-priority library module is linked to the program only if it contains such external references
that can not be resolved by standard library modules.

2.5.1. 3. .ENDMOD
Syntax:

.ENDMOD

Indicates the end of a module. Every module in the file should end with this directive, except the last one,
which ends with the directive .END.

 35

2.5.1. 4. .END
Syntax:

.END

Indicates both the end of a module and the end of the source file. The last module in the file must end
with this directive.

Note: Even if the file contains only one module and none of the .PMODULE, .LMODULE, or
.LMODULE2 directives are specified, the .END directive is still required.

2.5.2. Including File

2.5.2. 1. .INCLUDE
Syntax:

.INCLUDE '[path\]filename'

Includes the contents of the filename file in the source text immediately after this directive.

Single quotation marks are obligatory. Include file nesting is allowed. If path is omitted then the
Assembler first searches for the file in the current directory and then in directories specified in the
Assembler -I command line option (refer to IDE Online Help to see how to specify the project
directories by include files in the IDE).

If path is specified and starts with a drive letter or a backslash (\), it is assumed to be absolute (if only the
backslash is used, the path is absolute on the current drive). Otherwise, the Assembler uses path as
relative to the current directory or the directories specified in the -I command line option. Examples:

.INCLUDE 'config.inc' ;CONFIG.INC will be searched in the current
 ;directory and ones specified in
 ;the -I option
.INCLUDE 'inc\config.inc' ;CONFIG.INC will be searched in the 'INC'
 ;subdirectory of the current directory
 ;(relative path) and of the ones specified
 ;in the -I option
.INCLUDE 'c:\inc\config.inc' ;CONFIG.INC will be searched in the 'C:\INC'
 ;directory
.INCLUDE '\inc\config.inc' ;CONFIG.INC will be searched in the
 ;'drive:\INC' directory (absolute path),
 ;where drive is the current drive letter

2.5.3. Segment Declaration and Selection

2.5.3. 1. .ASEG, .RSEG, .OSEG
Syntax:

.RSEG segment_name [,allocation]

.OSEG segment_name [,allocation]

.ASEG segment_name [,allocation]

Use these directives to declare a new segment or select an existing segment that has been declared earlier
in the source text.
.RSEG directive declares/selects a relocatable segment.
.OSEG directive declares/selects an overlay segment.
.ASEG directive declares/selects an absolute segment.
For more details on relocatable/overlay/absolute segments, refer to Chapter 1. Basic Conceptions in this
manual.

 36

Segment_name indicates the segment that you want to create or switch to. Allocation is the allocation
attribute of the segment (see Segment ‘Allocation’ Attribute, Chapter 1). If you are declaring a new
segment in the current module, you should specify the segment allocation attribute. When you are
switching to a previously declared segment, the allocation attribute is optional. If still specified, it must be
the same as in the segment declaration. When selected, each segment should be specified using the same
directive it has been declared with. Otherwise, the Assembler will generate the "segment type conflict"
error.

If a segment is used in various modules, the segment type and allocation attributes must be the same in all
modules; otherwise, the Linker will generate an error message.

Extended Format of Segment Declaration

In certain situations, it is useful to have code executed from RAM. For example, code that controls Flash
memory write/erase can be located in the Flash memory itself and should be copied at runtime into RAM
to avoid conflict when the write/erase procedure runs.

Such functionality is implemented in the MCA-430 via extended segment declaration format. When you
declare a new data segment using the extended segment declaration format, you can write code and
initialize data in such a segment.

Syntax:

.RSEG data_segment_name, data (code_segment_name)

.OSEG data_segment_name, data (code_segment_name)

The Linker will place code (and initialized data) defined in the segment data_segment_name in the
current module into the code segment code_segment_name (ROM/Flash); allocate the data segment
data_segment_name in the RAM and adjust all addresses of the labels and names defined in
data_segment_name as if they are located in the segment data_segment_name with the allocation data.
As a result, you can copy such code from the ROM/Flash to the RAM at run time and execute it
afterwards.

The segment code_segment_name may be declared before; in this case it should have the allocation code
and should be relocatable. If it was not declared before, an implicit declaration is assumed:

.RSEG code_segment_name, code

Note: if there is any code written in the code_segment_name segment in the current module, space in the
data_segment_name will be reserved for it; the names defined in the code_segment_name segment will
obtain values in the data_segment_name, i.e. will have the allocation data. If the extended declaration
format is used more than once for a data segment, the code segment name should be the same in all
statements; otherwise, the Assembler will produce an error message.

Note: absolute segments cannot be declared in the extended format.

Example:
1) File 'reload.inc':

.LSTOUT -
Reload .MACRO srcSeg,dstSeg
;the macro copies contents srcSeg into dstSeg
;R13..R15 register are used
 mov #.sfb srcSeg,R13
 mov #.sfe srcSeg,R14
 sub R13,R14
 inc R14 ;srcSeg size in bytes

 37

 jz ~quit
 mov #.sfb dstSeg,R15
~loop:
 mov.b @R13+,0(R15)
 inc R15
 dec R14
 jnz ~loop
~quit:
.LSTOUT .
.ENDMAC

2) File 'reload.mca':

.PMODULE MOD1

.OSEG MyRamCode,data(ReloadCode)

.FUNC MyRamFunc

.PUBLIC MyRamFunc
;...
 ret
.ENDF

.ENDMOD

.PMODULE MOD2
.INCLUDE ’reload.inc’

.OSEG MyRamCode,data(ReloadCode)

.EXTRN(data)MyRamFunc
.FUNCTYPE 0 MyRamFunc(0)

.RSEG MyCode,code
;...
Reload ReloadCode,MyRamCode ;macro call
;...
CALL #MyRamFunc
;...
.END

2.5.3. 2. .ENDSEG
Syntax:

.ENDSEG

.ENDSEG switches the Assembler to the previous segment, which has been in use before the last
occurrence of the .RSEG, .OSEG, or .ASEG directive.

2.5.4. Memory Initialization

2.5.4. 1. .DCx
.DCB, .DCW, .DCD, .DCC, .DCI, .DCL, .DCR
Syntax:

[name] .DCB expr_or_string [,expr_or_string] …
[name] .DCW expression [,expression] …
[name] .DCD expression [,expression] …
[name] .DCC expr_or_string [,expr_or_string] …
[name] .DCI expression [,expression] …
[name] .DCL expression [,expression] …
[name] .DCR expression [,expression] …

 38

This is a group of directives that are used to declare constant data and tables in ROM (reserve memory
with initializing). Each of these directives specifies necessary data alignment, 'operand type' and 'type'
attributes for a name. Name is an optional parameter.

Note: By default, these directives can be used only in segments that have the code allocation attribute. In
the segment with the allocation data these directives can be used only if the segment is declared using the
extended format. See details for the .ASEG/.RSEG/.OSEG directives earlier in this chapter.

Character strings can also be specified in the .DCB and .DCC directives. The .DCR directive assigns the
float type attribute to a name, therefore, it is expected (but not verified by the Assembler) that a floating
point number will be specified in the expression.

The range for the value of the expression depends on the size of memory area that is being reserved. For
relocatable expressions, the value range is checked at link time.

Directive Value Range
.DCB, .DCC –128...255
.DCW, .DCI –32768...65535
.DCD, .DCL, .DCR –2147483647...4294967295

Directive Operand Type Type
.DCB BYTE unsigned char
.DCW WORD unsigned int
.DCD DWORD unsigned long
.DCC BYTE char
.DCI WORD int
.DCL DWORD long
.DCR DWORD float

2.5.4. 2. .DB1
Syntax:

[name] .DB1 expression_or_string [,expression_or_string] …

Reserves the required number of bytes in the object file and assigns values to them. This directive can be
used, for instance, to generate byte tables in ROM. Expression can be absolute or relocatable and should
be within the -128...+255 range. If the expression is relocatable then checking whether it is within this
range occurs at link time. If a string is specified then every symbol of the string initializes one byte in the
memory. Strings can be longer than 4 characters.

If the name is specified the following attributes are assigned to it:

Value Allocation Operand Type Type Relocatability
Current value of
the Assembler
Program Counter

Allocation of the
current segment

UNTYPED nothing (i.e. 0) Relocatability of
the current
segment

Note: The operand type should be assigned to a name. Then, the Assembler can detect, for example, if a
byte operand is used in a word instruction. Also, it is advisable to assign type to name. This can be
achieved by consequently specifying the corresponding directives (e.g., .DB1/.TYPE/.BYTE), although
it is simpler to use the .DCB or .DCC directives.

 39

2.5.4. 3. .DB2, .DB4
Syntax:

[name] .DB2 expression [,expression] …
[name] .DB4 expression [,expression] …

Defines 2-byte or 4-byte data and assigns values to them. Expression in the .DB2 directive can be either
absolute or relocatable but its value must reside within the -32768 to 65535 boundaries. Expression in the
.DB4 directive can be either absolute or relocatable but its value must be within the -2147483647 to
4294967295 boundaries. A floating point number can be used as the expression. If the expression is
relocatable then checking whether it is within this range is performed at link time.

If the name is specified, the following attributes are assigned to it:

Value Allocation Operand Type Type Relocatability
Current value of
the Assembler
Program Counter

Allocation of the
current segment

UNTYPED nothing (i.e. 0) Relocatability of
the current
segment

Note: The operand type should be assigned to a name. Also, it is advisable to assign the type to a name.
This can be achieved by consequently specifying the corresponding directives (e.g.,
.DB2/.TYPE/.WORD), although is simpler and easier to use the .DCW, .DCI, .DCD, .DCL, and .DCR
directives.

2.5.5. Memory Reservation without Initialization

2.5.5. 1. .DSx
.DSB, .DSW, .DSD, .DSC, .DSI, .DSL, .DSR
Syntax:

name .DSB [expression] ;unsigned value, 8 bit
name .DSW [expression] ;unsigned value, 16 bit
name .DSD [expression] ;unsigned value, 32 bit
name .DSC [expression] ;signed value, 8 bit
name .DSI [expression] ;signed value, 16 bit
name .DSL [expression] ;signed value, 32 bit
name .DSR [expression] ;floating-point value, 32 bit

This is a group of directives used to define variables and arrays of specified type (reserve memory
without initialization). The name is the name assigned to the variable. If the expression is not specified or
equals to 1 then one variable is defined.

If the expression is greater than 1, an array of expression variables of the specified size/type is defined.
The expression must be of absolute type and contain no forward references.

The name inherits the allocation and relocatability attributes from the current segment. The following
attributes are assigned to the name:

Directive Operand Type Type Alignment
.DSB BYTE unsigned char byte
.DSW WORD unsigned int word
.DSD DWORD unsigned long word
.DSC BYTE char byte
.DSI WORD int word

 40

.DSL DWORD long word

.DSR DWORD float word

Example:

.RSEG MyData,data ;open data segment
MyFlags .DSW ;define WORD variable
MyFlag1 .EQU .byte MyVar ;define storage for low byte
MyFlag2 .EQU .byte MyVar+1 ;define storage for high byte
…

2.5.5. 2. .DS
Syntax:

[name] .DS expression

Reserves the number of bytes specified by the expression without initialization. Expression must be of
absolute type and contain no forward references.

This directive is used only for reserving memory (e.g., for a variable in RAM). It does not generate any
code simply incrementing the program counter value. If the name is specified, the following attributes are
assigned to it:

Value Allocation Operand Type Type Relocatability
Current value of
the Assembler
Program Counter

Allocation of the
current segment

UNTYPED nothing (i.e. 0) Relocatability of
the current
segment

Note: If you need to reserve space for a variable and assign the 'operand type' attribute (as well as the
'type' attribute) to this variable, it is better to use one of the .DSx group directives.

2.5.6. Symbol Definition

2.5.6. 1. .DEFINE, .EQU
Syntax:

name .DEFINE expression
name .EQU expression

Use these directives to define a name and assign the expression value to it. The .DEFINE directive is
different from the .EQU directive in terms of scope of the name defined. The value of the name declared
with the .DEFINE directive is maintained across all subsequent modules in the source program file. The
scope of the name defined with the .EQU directive is limited to the current module only. Expression used
in .DEFINE directive must be absolute.

All attributes of the names declared with these directives are inherited from the expressions. See also
“Type Conversion and Checking in Expressions”.

Note that the 'type' attribute of expression is always nothing; it does not depend on the 'type' attributes of
operands. If the name is declared as public, then the correct 'type' attribute should be assigned to it.
Otherwise the linker can generate ‘type conflict’ warning messages.

In pure assembler programs, you can disable type checking with –t command line linker option and
avoid the ‘type conflict’ warnings.

 41

In mixed C/assembly programs, it is not recommended to disable type checking. If a public name in an
assembly module is defined with .EQU directive as an alias of another name, the type of the alias name
should be properly defined with .TYPE directive (operator .TYPE can be used to get corresponding type
attribute value), for example:

Name1 .DSB ; Name1 has type 'uchar'
Name2 .EQU Name1 ; Name2 has type 'nothing' here
.TYPE Name2(.TYPE Name1) ; Name2 has type of Name1, i.e. 'uchar'

2.5.6. 2. .SET, =
Syntax:

name .SET expression
name = expression

Use these directives to define a name and assign the expression value to it. Unlike .EQU and .DEFINE
directives, values assigned to names with .SET and "=" may be redefined later in the current module
using the same directives. Note, unlike the .DEFINE and .EQU directives, names defined with .SET and
"=" can not be made public and serve as externals in other modules.

2.5.6. 3. .LABELx
.LABELB, .LABELW, .LABELD, .LABELC, .LABELI, .LABELL, .LABELR
Syntax:

name .LABELB
name .LABELW
name .LABELD
name .LABELC
name .LABELI
name .LABELL
name .LABELR

This group of directives is used to define typed labels. 'Operand type' and 'type' attributes are assigned to
the label name. It is preferable to use such labels to mark the start or end address of data tables. The
Assembler program counter does not change.

The following attributes are assigned to a typed label:

Value Allocation Relocatability
Current value of the
Assembler program counter

Allocation of the current
segment

Relocatability of the current
segment

Directive Operand Type Type Alignment
.LABELB BYTE unsigned char byte
.LABELW WORD unsigned int word
.LABELD DWORD unsigned long word
.LABELC BYTE char byte
.LABELI WORD int word
.LABELL DWORD long word
.LABELR DWORD float word

 42

Example 1:

;define a table in ROM:
.RSEG TABLES,code ;open segment to be placed in the ROM
 MyTable .LABELW ;set appropriate label
 .DCW 22,44,77,88 ;table
 .DCW 66,33,55,99 ;contents

Example 2:

;define overlapping variables:
.RSEG MyData,data ;open data segment
 MyVar .LABELW ;set WORD label
 MyVarLo .DSB ;define storage for low byte
 MyVarHi .DSB ;define storage for high byte

Note, that the following statement:

name: ...

where name is the label name, also contains a label but this label has the 'operand type' attribute
UNTYPED. It is recommended to use such labels only as jump addresses, not for accessing data.

2.5.7. Program Linkage

2.5.7. 1. .PUBLIC
Syntax:

.PUBLIC name [,name] …

This directive sets the name(s) as public, i.e. accessible using external references from other modules.
Such names must be defined in the current module. Macro names, module names, keywords and symbols
declared as external can not be declared as public.

2.5.7. 2. .EXTRNx
.EXTRNB, .EXTRNW, .EXTRND, .EXTRNC, .EXTRNI, .EXTRNR, .EXTRNL, .EXTRNN
Syntax:

.EXTRNB (allocation) name [,name] …

.EXTRNW (allocation) name [,name] …

.EXTRND (allocation) name [,name] …

.EXTRNC (allocation) name [,name] …

.EXTRNI (allocation) name [,name] …

.EXTRNL (allocation) name [,name] …

.EXTRNR (allocation) name [,name] …

.EXTRNN name [,name] …

The directives in this group declare external names with corresponding attributes ('allocation', 'operand
type', and 'type'). The .EXTRNN directive is used to declare external names without the 'allocation'
attribute (such as numeric constants). Other directives can be used to declare names of external variables,
array names, table names, etc.

Note: it is recommended to use the .EXTRNF directive for declaration of external names that are
function addresses.

 43

The following attributes are assigned to the declared external names:

Value Allocation Relocatability
External, estimated by
the Linker

Allocation specified in
the directive

EXT

Directive Operand Type Type
.EXTRNB BYTE unsigned char
.EXTRNW WORD unsigned int
.EXTRND DWORD unsigned long
.EXTRNC BYTE char
.EXTRNI WORD int
.EXTRNL DWORD long
.EXTRNR DWORD float
.EXTRNN UNTYPED nothing

2.5.7. 3. .EXTRN
Syntax:

.EXTRN (allocation) name1 [,name2]…

This directive declares name as external. This name must be declared as public in some other module,
otherwise an error message will be produced at link time. This directive is normally used to declare
external labels.

Note, to make a correct declaration of an external function and to avoid "type mismatch" Linker warning,
it is recommended to use the special directive .EXTRNF rather than the .EXTRN directive. If an external
function is defined in a data segment declared using extended format, you can use the .FUNCTYPE
directive to assign proper function type. See Segment Declaration and Selection, Chapter 2.

'Allocation' attribute is obligatory. Therefore, you can not use the .EXTRN directive to declare an external
name, which is just a number (use the .EXRTNN to declare an external numerical constant).

This directive does not assign any attributes to external name except allocation (in fact, the 'operand type'
attribute is set to UNTYPED and the 'type' attribute is set to nothing or 0) and it is not recommended to
use it to declare data.

The Linker checks whether the attributes of external names match the attributes of the corresponding
public names, so when an external name is declared in such a way, it might be necessary to specify the
appropriate attributes using the following directives: .TYPE and .BYTE, .WORD, .DWORD .

Assuming the variable RAT is declared in a certain program module:

…
.RSEG DC,data
…
 RAT .DSB 1 ;data, BYTE, unsigned char
.PUBLIC RAT ;declare a name as public
…

 44

To gain access to this variable from another module, this name should be declared as external and the
appropriate types should be specified:

…
.EXTRN (data)RAT ;RAT was declared in segment with allocation data
.BYTE RAT ;BYTE operand type is assigned
.TYPE RAT(.uchar) ;unsigned char type is assigned
…

Note that the .EXTRNx directives declare external names with the appropriate operand type and type, so
the last fragment of the program can be replaced by:

…
.EXTRNB (data)RAT
…

2.5.7. 4. .EXTRNF
Syntax:

.EXTRNF function_name [expr1] [(expr2 [, expr3] ...)]

The .EXTRNF directive is used for declaring external Assembler subroutines/functions (defined with
.FUNC/.ENDF in other module), and external C functions. This directive defines a function_name with
the following attributes:

Value Allocation Operand Type Type Relocatability
Undefined until
linking

code UNTYPED Corresponds to type of
function, which receives
parameters of types
expr2, expr3, etc. and
returns a value of type
expr1

EXT

When Linker attempts to resolve the external references, it checks all attributes of the external name and
matching public name in another module.

The expressions expr1, expr2, expr3 (and other as required) must be absolute and may not contain any
forward references. It is recommended to use predefined constants such as .CHAR, .UINT, etc.
Predefined .NOCHECK constant in the list of function arguments means the function has unknown
number of arguments of unknown types. This constant can be put only at the last position of the
parameter list. The Linker handles .NOCHECK as being compatible with any type. Since the type
numbers are defined only for the basic types, .NOCHECK can be used to specify arrays, structures,
typedefs, unions, and pointer-to-function types, as well as any qualified type, i.e. const or volatile. See
also sections Name Types and Type Attribute for details.

If expr1 is not specified then it is substituted with .NOCHECK. The Linker does not check function
arguments if the argument list (expr2, expr3, etc.) is not specified. The .EXTRNF directive without
arguments can be used in pure assembler programs. In mixed C/Assembler programs, it is recommended
to declare arguments in the .EXTRNF directive.

The .EXTRNF directive assigns function_name the attributes that are necessary for a function in C
language. To make a mixed program work correctly, the user must organize interchanging of the
parameters and return values between C and assembler functions according to the C function calling
convention. For details, see MCC-430 C Compiler User’s Guide.

 45

Example – Various ways to declare an external function:

;external function receiving char
;and returning int:
.EXTRNF f1 .int (.char)

;external function receiving int
;and returning nothing:
.EXTRNF f2 .void (.int)

;external function without arguments
;and returning int:
.EXTRNF f3 .int (.void)

;external function with two int arguments
;and one argument - strucutre returning float:
.EXTRNF f4 .float (.int, .int, .nocheck)

;external function returning int
;(the linker will not check correspondence for argument list):
.EXTRNF f5 .int

;external function receiving float
;(the linker will not check correspondence for return value type):
.EXTRNF f6 (.float)

;external function (the linker will not check for compliance to the list
;of arguments and to the type of the value returned):
.EXTRNF f7

2.5.8. Assignment of Attributes to Names

2.5.8. 1. .BYTE, .WORD, .DWORD
Syntax:

.BYTE name [,name] …

.WORD name [,name] …

.DWORD name [,name] …

These directives specify the operand type attribute of a name. 'Operand type' attribute of a name can be
assigned only once, but if you use the name in expression, you can redefine the operand type of the
expression by one of the .BYTE, .WORD, .DWORD operators.

Note, the .DCx, .DSx, .LABELx, .EXTRNx directives set the 'operand type' attribute of the name
automatically. The .BYTE, .WORD, and .DWORD directives do not change the 'allocation' attribute of
the name.

These directives can not be used with the names that have the code allocation.

Example:

.ASEG Reg, data

.ORG 200h
A .DSB
.RSEG RD,data
Name1: .DS 2 ;defines NAME1 with operand type UNTYPED
Name2: .DS 2 ;defines NAME2 with operand type UNTYPED
.BYTE Name1 ;assigns operand type == BYTE to NAME1
.RSEG MyCode,code
mov.b Name1,A ;OK
mov.b Name1+1,A ;OK

 46

mov.b Name2,A ;warning
mov.b Name2+1,A ;warning
.END

2.5.8. 2. .TYPE
Syntax:

.TYPE name(expression) [,name(expression)] …

The .TYPE directive assigns the 'type' attribute to name. The 'type' attribute is equal to expression, which
should be absolute and contain no forward references. It is recommended to use the predefined constants
(see section Predefined Constants earlier in this chapter).

The type assigned by the .TYPE directive is used for generating the source-level debugging information
and type checking at link time. The Linker checks whether the type attributes of external names match the
type attributes of public names.

Normally, this directive is not required as the names defined with the basic set of the Assembler
directives already have the 'type' attributes properly assigned.

2.5.8. 3. .FUNCTYPE
Syntax:

.FUNCTYPE expr1 func_name (expr2 [, expr3] ...)

The directive .FUNCTYPE assigns 'type' attribute to the name func_name, which corresponds to the
function type. The function receives arguments with the types expr2, expr3 etc. and returns a result with
the type expr1. This directive is used for function definition in mixed assembler/C programs and allows
strict type checking performed by the Linker.

The expressions expr1, expr2, expr3 ... must be absolute and contain no forward references. It is
recommended to use predefined constants such as .CHAR, .UINT etc. Predefined constant .NOCHECK
in the list of function arguments means unknown number of arguments of unknown type. Respectively,
this constant can be put only in the last position of the parameter list. The Linker considers .NOCHECK
to be compatible with any type. As type numbers are defined only for basic types, .NOCHECK is used to
specify arrays, structures, typedefs, unions, and pointer-to-function types, as well as any qualified type,
such as const or volatile. For additional information on type numbers, see Name Types and ‘Type’
Attribute, Chapter 1.

Normally, this directive is not needed as the .FUNC and .EXTRNF directives with parameters allow
assigning the 'type' attribute properly.

2.5.9. Function Declaration

2.5.9. 1. .FUNC, .ENDF
Syntax:

.FUNC function_name [expr1] [(expr2 [, expr3] …)]
…
<function body>
…
.ENDF

These directives are used for writing functions in assembly language. The .FUNC and .ENDF directives
denote the beginning and the end of function definition respectively. It is not allowed to define a function
within another function, which means that the .FUNC directive can not be used again before the .ENDF
directive ends the current function definition.

 47

The name function_name obtains the following attributes:

Value Allocation Operand Type Type Relocatability
Current Program
Counter value

code UNTYPED corresponds to type of
function, which receives
parameters with types
expr2, expr3, etc. and
returns a result with type
expr1

Relocatability of
the current
segment

The .FUNC directive must be placed in code segment or data segment declared using the extended
format (see description of directives under Segment Declaration and Selection). The .ENDF directive
must be placed in the same segment as the preceding .FUNC directive. The current address of the
segment relative to the beginning of the segment fragment must be greater than the address of the
function entry point.
The expressions expr1, expr2, expr3 (and other as required) must be absolute and may not contain any
forward references. It is recommended to use predefined constants such as .CHAR, .UINT etc.
Predefined constant .NOCHECK in the list of function arguments means that the function has unknown
number of arguments of unknown types. This constant can be put only in the last position of the
parameter list. The Linker considers .NOCHECK being compatible with any type. Since the type
numbers are defined only for the basic types, the .NOCHECK can be used to specify arrays, structures,
typedefs, unions, and pointer-to-function types, as well as any qualified types such as const or volatile.
See section Name Types and Type Attribute in Chapter 1 for details.

If expr1 is not specified then it is substituted with .NOCHECK. The Linker does not check function
arguments if the argument list (expr2, expr3, etc.) is not specified. The .FUNC directive without
arguments can be used in pure assembler programs. In mixed C/Assembler programs, it is recommended
to declare arguments in the .FUNC directive.

See also: section Functions later in this chapter.

2.5.10. Address Control

2.5.10. 1. .ORG
Syntax:

.ORG expression

Sets the value of the current segment program counter equal to the value of the expression. The
expression should not contain any forward references. Relocatability of the expression should be the same
as the segment type, i.e. the expression should be absolute in the absolute segment and relocatable in the
relocatable or overlay segments.

Example:

.RSEG MySeg

.ORG $+5

Byte/word extraction operators, such as .HWRD, .LWRD, etc., can not be used in the expression.

2.5.10. 2. .ALIGN
Syntax:

.ALIGN expression

 48

Expression must be absolute and should not contain any forward references. This directive performs
alignment of the current program counter on the boundary of 2 raised to the expression power:

0 - no alignment
1 - alignment on even addresses (multiple of 2)
2 - alignment on address multiple of 4
 so on…

In the absolute segments, the alignment specified by the .ALIGN directive is performed by the
Assembler. In the relocatable segments the alignment is performed by the Linker by automatically
adjusting the start address of each segment so that the alignment is maintained for all the .ALIGN
directives in that segment. After the segments are linked, the Linker additionally checks that the
alignment specified by the all the .ALIGN directives is maintained. If misalignment is detected the Linker
generates the appropriate error message. Thus, the .ALIGN directive provides 100% guarantee of
obtaining the required alignment.

2.5.11. Conditional Assembly
Conditional assembly directives provide a way to conditionally include and exclude blocks of the source
program text from the assembly process. Selection is made upon the results of calculations performed at
assembly time. Using the conditional assembly directives is convenient in macros, as this adds extra
flexibility to macros.

2.5.11. 1. .IF, .ELSE, .ENDIF
Syntax:

.IF expression
 .
 .
 [.ELSE
 .
 .]
.ENDIF

If the calculated value of expression is not equal to .FALSE (0) then the fragment between .IF and .ELSE
(or between .IF and .ENDIF, if .ELSE is omitted) is assembled. If the expression value is equal to
.FALSE (0), the .ELSE block (if present) is assembled.

Expression must be absolute and contain no forward references. Nesting of conditional blocks is
supported.

2.5.12. Listing Control

2.5.12. 1. .LSTOUT
Syntax:

.LSTOUT option

This directive enables/disables generation of listing. Option is one of the three options:

- listing generation is unconditionally disabled;
+ listing generation is unconditionally enabled;
. listing generation is enabled, if the -l command line option is specified.

In order to exclude some fragment of the source text from the listing, use ".LSTOUT –" to disable listing
generation, then use ".LSTOUT ." to restore the mode specified in the command line. The output listing
file is given the same name as the source file, with the .LST extension.

 49

2.5.12. 2. .LSTCND
Syntax:

.LSTCND option

This command controls whether the false conditionals are included in the listing file. If listing is disabled
then this directive does not have any effect. Option is one of the three options:

- listing generation is unconditionally disabled;
+ listing generation is unconditionally enabled;
. listing generation is enabled, if the -c command line option is specified (default).

2.5.12. 3. .LSTMAC
Syntax:

.LSTMAC option

This command controls whether the text of macro definitions is included in the listing. This directive does
not have any effect if the listing is disabled. Option is one of the three options:

- listing generation is unconditionally disabled;
+ listing generation is unconditionally enabled;
. listing generation is enabled, if the -g command line option is specified (default).

2.5.12. 4. .LSTEXP
Syntax:

.LSTEXP option

This command controls whether macro expansions are included in the listing. False conditional fragments
in macros are included in the listing file only if both the macro expansion and the false conditional block
listings are enabled either with the -c command line option or with the .LSTCND directive. The
.LSTEXP directive does not have any effect if the listing is disabled. Option is one of the three options:

- listing generation is unconditionally disabled;
+ listing generation is unconditionally enabled;
. listing generation is enabled, if the -e command line option is specified (default).

2.5.12. 5. .LSTXRF
Syntax:

 .LSTXRF option

This command controls whether the cross-reference tables are included in the listing. It is recommended
to use this command, for example, when the source file contains several modules. In this case, you can
enable cross-reference table listing generation in some modules and disable it in the other modules.
Option is one of the three options:

- listing generation is unconditionally disabled;
+ listing generation is unconditionally enabled;
. listing generation is enabled, if the –x command line option is specified.

2.5.12. 6. .LSTWID
Syntax:

.LSTWID option

 50

This directive enables/disables the "wide" mode for listing generation. In the "wide" mode an additional
column with either the status or the included file nesting information is added to the listing. Option is one
of the three options:

- listing generation is unconditionally disabled;
+ listing generation is unconditionally enabled;
. listing generation is enabled, if the –w command line option is specified.

2.5.12. 7. .TITL
Syntax:

.TITL 'string'

Specifies the title string that will be printed out on the top of every page of the listing file.

Example:

.TITL 'CONTROL SYSTEM ONE'

2.5.12. 8. .STITL
Syntax:

.STITL 'string'

Specifies the subtitle string, which will be printed out on every listing page as a subtitle.

Example:

.STITL 'Keyboard service routines'

2.5.12. 9. .PAGE
Syntax:

.PAGE

This directive starts a new page in the listing.

2.5.13. Miscellaneous Directives

2.5.13. 1. .WARNING, .ERROR, .MESSAGE
Syntax:

.WARNING 'string[,string...]'

.ERROR 'string[,string...]'

.MESSAGE 'string[,string...]'

When Assembler encounters one of these directives, it generates a message on the console containing the
string. The message includes the appropriate caption, file name and line number. When several character
strings are specified, the Assembler concatenates them into one string in the order they are listed.

User message numbers are preset: message #0 for the .MESSAGE directive, message #1 for the .ERROR
directive, and message #2 for the .WARNING directive.

Example:

.WARNING 'Possible problem',' with stack overflow.'

 51

.ERROR 'Invalid macro call!', ' Check the number of parameters.'

.MESSAGE 'Complete.'

Display on the console:

Warning[2] filename.ext(1,0): Possible problem with stack overflow.
Error[1] filename.ext(2,0): Invalid macro call! Check the number of
parameters.
Message[0] filename.ext(3,0): Complete.

2.5.13. 2. .LNKCMD
Syntax:

.LNKCMD 'command_line_parameters_for_Linker'

Passes parameters to the Linker. This directive is used to specify some of the options for the Linker
directly in the source Assembler file. When the module with the .LNKCMD directive is linked to a
program, the entire command_line_parameters_for_Linker character sequence between the quotation
marks is passed to the Linker as if it were the command line parameters. Only the following options can
be used:

 -A: Define the address space
 -C: Enable code generating in the address space
 -K: Reserve ranges in address spaces with the specified allocation
 -N: Reserve ranges in address space
 -S: Segment allocation
 -H: Specify filename extension for HEX-file
 -Z: Increase segment size

See for details Appendix D. MCLINK Command Line Interface.

2.5.13. 3. .OBJREC
Syntax:

.OBJREC expression [,expression] …

Directs byte data into the output object file. This directive writes the byte or a sequence of bytes,
specified in the expression(s), directly to the object file. The expression must be absolute and reside in the
range from -128 to +255.

Normally, this directive is not used. However, it can be useful for implementing some of the sophisticated
operations ("tricks"). Usage of this directive expects that you are familiar enough with relocatable object
file format to prevent damaging the output file.

2.6. Functions
MCA-430 supports writing assembler functions using the special directives .FUNC/.ENDF. This
provides the extended development capabilities, such as:

§ In Assembler modules you can use local labels and variables in functions with the scope limited
to the function body.

§ When creating mixed C/Assembler projects some functions can be written in Assembler and
called from C modules and vice versa.

§ An advantage of using the .FUNC/.ENDF directives is the opportunity to apply performance
analyzer in debugging (for details, see IDE Online Help).

 52

2.6.1. Pure Assembler Programs
The .FUNC/.ENDF pair is used to define functions in Assembler programs. Inside a function you can
define and use local names and labels – identifiers starting with underscore symbols. These names or
labels are visible only in the function embraced in the .FUNC and .ENDF directives. This is
implemented to avoid long unique identifiers for function internal names. Local names are not included in
the debugging information and can not be declared as public.

Note, when a name starting with an underline symbol has been defined outside a function prior to the
.FUNC directive, this name is not local in this function but is visible inside it. An external name starting
with the underline symbol can also be declared in a function. Such name is not local; its scope is not
limited to area defined by .FUNC and .ENDF, and it is included in the debugging information.

Example – Local labels in a pure assembler program:

…
.RSEG MyData,data ;switch to the data segment
_xVar .DSI ;declare variable in the MyData segment
 ;It is NOT local in the function,
 ;because it is declared outside.
.RSEG MyCode,code ;switch to the code segment
.FUNC my_func ;start function
 mov _xVar,_var ; _xVar - normal variable
 mov #0,_var+1 ; _var - local variable
 rlc _var
 jnc _1 ;_1 - local label
 mov #0FFh,_var+1 ;
_1: ret ;definition of local label _1

.OSEG MyTemp,data ;switch to the data segment
_var .DSI ;declare local (in function) variable
.RSEG MyCode ;return to the code segment
.ENDF ;close function
…

2.6.2. Mixed C/Assembler Programs
When developing a mixed C/Assembler project sometimes a better approach is to write the main program
in C, utilizing all features and capabilities provided by this high level language, and write some hardware
specific or time-critical functions in assembler. The function can be written in assembler, translated into a
separate object module, and then called from C program, keeping with the calling convention (for details,
see MCC-430 C Compiler User’s Guide). Moreover, some assembler code can be put directly in a C
program using special C pragma directives. Conversely, a function can be written in C and then called
from an assembler module. In this case, the function should be described in Assembler module as external
with the .EXTRNF directive.

It is strongly recommended to use the .FUNC/.ENDF directives to define Assembler functions and the
.EXTRNF directive to declare external C functions due to the following reasons. If an assembler function
is called from a C function, its prototype (specifying the function argument types and return value type)
should be previously declared in the C module. If the function entry point in the assembler module is
simply a label, the type of the function is nothing and the Linker will detect type mismatch at link time
and will generate the "type mismatch" warning message. If a C function is called from an assembler
module, it should be declared as an external name in the module. If the .EXTRN directive is used, the
type of the function is nothing and the Linker also will detect type mismatch at link time and will
generate the "type mismatch" warning message. Use the .EXRN and .FUNCTYPE directives to declare
external functions, which are defined in data segments declared using the extended format.

The strict type checking can be disabled using the Linker -t command line option, which will suppress
linker "type mismatch" warnings, but in this case, the linker, for example, will not detect a situation when

 53

the type and/or number of arguments of the called function do not match with the type/number of
parameters in function definition. Therefore, a better approach is to use the .FUNC/.ENDF and
.EXTRNF directives to properly specify the function type. Use the predefined constants to specify types
of function arguments and return value.

For details, see function declaration directives under Assembler Directives earlier in this chapter.

Example 1 – Declaration of an external C function in the assembler program:

;MY_C_FUNC is an external C function declared as:
;void MY_C_FUNC(long a,...)
;
.EXTRNF MY_C_FUNC .void (.long,.ellipsis) ;declaration of the function
… ;in Assembler program
…
;Next, construct the stack frame and pass the arguments
;according to C conventions.
…
call MY_C_FUNC ;function call
;
;Finally, remove the stack frame and extract the return value of the
;function. In this example the void function does not have a return
;value.
…

Example 2 – Declaration of assembler function as C function for using in C modules:

.FUNC MY_ASM_FUNC .int (.uint,.char,.int_ptr)
… ;function body
… ;must comply with
… ;the C function calling conventions
.ENDF ;end of function
;
.PUBLIC MY_ASM_FUNC ;make the function accessible in
 ;other modules written in C

2.7. Macro Tools
Macros are special tool for development and use of the source text 'patterns' that allow parameter
substitution. When writing programs you will notice quite often that very similar sequences of
instructions are repeated several times, with minor differences. For example, when writing a program you
have to make a subroutine that copies 5 bytes from one memory location to another. Later you realize that
you are writing the similar code, but for copying 4 bytes. If both subroutines operate in a similar way, you
will see that they are nearly identical with the exception of three parameters: number of bytes and two
memory addresses. It is more convenient to create that code by means of macros than to write many times
similar subroutines.

Advantages provided by macros:

§ As you have to type shorter text, the probability of making errors is reduced.
§ Scope of names and labels that are used only within a macro can be limited so that they are

"visible" to the Assembler within a macro only. Therefore, these names do not need to be unique.
Macro written in such a way can be used many times, and "internal" (local) names of the macro
will not be duplicated.

§ If a logical error is detected within a macro, you will have to correct it only once in contrast to the
situation, when you have to scan the whole source program text in order to find similar code
fragments and correct the error in all of them.

§ If similar program fragments are developed with a macro, it is much easier to modify those
fragments as you have just to modify the macro definition only.

 54

§ The efficiency of programmers' work increases as the time is not spent for duplicating source
text. Besides, the most frequently used macros can be made available to other programmers.

Macros versus subroutines (functions):

§ A subroutine (function) is a part of the program executable code; it can be called from other parts

of the code at the stage of program execution. A macro is defined once in the source program text
and is substituted into the program text at the compilation stage as a macro expansion. There can
be more than one macro substitution.

§ When a function is called, the same code is executed every time. When a macro is called, a
unique sequence of program lines is formed in accordance with the pattern specified by the macro
definition.

§ Every function call increases the time of program execution. If you use a macro, program
execution time is not increased by calls, but the total program size is increased.

The sections below contain information on macro and repeating block definition directives, macro and
repeating operators and special characters, as well as using the local names in macros.

2.7.1. Defining a Macro
Before a macro can be used it should be described earlier in the program. Defining a macro the user gives
it a name, which is then used to call the macro. Macro definition block starts with the .MACRO directive
and ends with the .ENDMAC directive. Macro definition can contain repeated blocks and calls to other
macros, but can not contain other macro definitions. Nested macro definitions are not supported.

Macro definition has the following syntax:

macro_name .MACRO [formal_parameters_separated_by_commas]
<macro body>
.ENDMAC

The macro_name is a name which will be used further in the program to expand the macro. You can
specify formal parameters for the macro if you want it to be expanded with different actual arguments.
You can give any names to the formal parameters as these names are local for the macro. Even if the
name is already defined in the program, parameter name will be used in the macro.

The body is any number of Assembler statements. You can use the formal parameters in these statements.

You can use .BLANK and .PARM operators and .NPARMS predefined variable with macros. The
.BLANK operator can be used inside a macro to determine if a certain actual parameter is empty
(omitted). Use the .PARM operator to get access to a macro argument by the number of its position in the
parameter list. The .NPARMS variable contains the number of actual parameters passed to the macro.
The .NPARMS variable must also be used only within a macro definition.

2.7.1. 1. .MACRO Directive
Syntax:

name .MACRO [formal_parameters]

This directive declares the beginning of macro definition (macro body). Name is the macro name to be
used in macro calls. Formal parameters are symbolic names defined by the user. They should be separated
by commas and there can be not more than 33 parameters. When a macro is expanded, the Assembler
substitutes its formal parameters with the actual parameters. The scope for the formal parameters is
limited to macro body. Macro body can contain any machine instruction mnemonics and necessary
directives, for instance, conditional assembling directives. Calls to macros from within other macros are
supported.

 55

2.7.1. 2. .ENDMAC Directive
Syntax:

.ENDMAC

This directive indicates the end of macro definition or a repeating block.

2.7.1. 3. .EXITM Directive
Syntax:

.EXITM

When the .EXITM directive is encountered, the macro expansion is immediately terminated. This can be
convenient when a conditional block is used in the macro body. The .EXITM directive can be located
only inside a macro body or a repeating block.

2.7.1. 4. Operator .BLANK
Syntax:

.BLANK formal_parameter_name

This operator can be used inside macros only. It returns .TRUE (-1) if the actual argument passed to
macro in macro call to replace the parameter with formal_parameter_name is empty (omitted in the
macro call). Otherwise, the returned value is .FALSE (0).

Example:

foo .MACRO par1,par2
.IF .BLANK par1 == .FALSE
 .DCB par1
 .ELSE
 .DCB 0
 .ENDIF
.IF .BLANK par2 == .FALSE
 .DCB par2
 .ELSE
 .DCB 0
 .ENDIF
.ENDMAC
.RSEG MyCode,code
foo 1,2 ;will be expanded to:
 ;.dcb 1
 ;.dcb 2
foo ,2 ;will be expanded to:
 ;.dcb 0
 ;.dcb 2
foo ;will be expanded to:
 ;.dcb 0
 ;.dcb 0
.END

2.7.1. 5. Operator .PARM
Syntax:

.PARM expression

Returns the text of the actual argument that is specified in a macro call at position indicated by
expression. If the parameter is not specified, .PARM operator returns nothing. This operator can be used

 56

only in macros. The argument of the operator must be an absolute expression and must contain no
forward references. For instance, .PARM 1 returns the first parameter, .PARM 2 returns the second
parameter, etc.; .PARM 0 returns the name of the macro.

Example:

...
Clear .MACRO
~parm_no = .NPARMS ;define temporary local name
 .REPT ~parm_no ;initiate repeating block
 mov #0,.PARM ~parm_no ;use .PARM
 ~parm_no = ~parm_no - 1 ;decrement temporary variable
 .ENDMAC
.ENDMAC
...
.RSEG MyCode,code
Clear R5,R6,R7 ;example using the macro
...
.END

Generated code:

mov R7,#0 ;note the order: R7,R6,R5
mov R6,#0
mov R5,#0

2.7.1. 6. Variable .NPARMS
You can reference this variable only in macro definition blocks. The .NPARMS value is equal to the
number of actual arguments specified in the macro call. Omitted parameters are also counted. Actually,
.NPARMS equals to the number of commas (,) in the macro call plus 1.

Example:

foo .MACRO p1,p2
.IF .NPARMS > 0
.DCB p1
.ENDIF
.IF .NPARMS > 1
.DCB p2
.ENDIF
.ENDMAC
.RSEG MyCode,code
foo 1,2 ;expands to:
 ;.dcb 1
 ;.dcb 2
foo 1 ;expands to:
 ;.dcb 1
foo ,1 ;expands to:
 ;.dcb - error
 ;.dcb 1
.END

2.7.2. Calling a Macro
Once a macro has been defined, it can be called from anywhere in the program any number of times. A
macro call consists of the macro name and actual parameters. When a macro is invoked, the call is
replaced with the macro body, and all the formal parameters are replaced with the actual arguments. This
process is called macro expansion.

 57

Macro call syntax:

[label:] macro_name [actual_arguments]

Macro_nameI is the name of macro being called. Actual_arguments is a list of actual arguments separated
by commas. You may specify up to 33 actual arguments. Label is an optional label defined by the user.

Macro can be called only within the module where it is defined.
The list of actual arguments should not necessarily be the same as the list of formal parameters specified
in the macro definition. However, the number of actual arguments should not be greater than the number
of formal parameters (this restriction is not applied when .NPARMS or .PARM operators are used in the
macro body). In the macro body the Assembler substitutes actual parameters for all tokens corresponding
to the formal parameters. If the actual argument for any of the formal parameters is not specified, the
formal parameter is replaced with the NULL character (removed).

Example:

FillB .MACRO addr,val,count ;macro definition
mov #addr, R5
mov #count,R6
~loop:
mov.b #val,0(R5)
inc R5
dec R6
jnz ~loop
.ENDMAC

.RSEG MyData,data ;array in data
MyArrayLen .EQU 63 ;array length is 63
MyArray .DSB MyArrayLen ;array definition

.RSEG MyCode,code
FillB MyArray,55,MyArrayLen ;macro call
.END

Listing:

 1 FillB .MACRO addr,val,count ;macro definition
10
11 .RSEG MyData,data ;array in data
12 0000003F MyArrayLen .EQU 63 ;array length is 63
13 00000000 MyArray .DSB MyArrayLen ;array definition
14
15 .RSEG MyCode,code
16 00000000 FillB MyArray,55,MyArrayLen ;macro call
 + 00000000 35400000 mov #MyArray, R5
 + 00000004 36403F00 mov #MyArrayLen,R6
 + 00000008 ~0001~loop:
 + 00000008 F5403700 mov.b #55,0(R5)
 0000000C 0000
 + 0000000E 1553 inc R5
 + 00000010 1683 dec R6
 + 00000012 FA23 jnz ~0001~loop
 +
17 .END

2.7.3. Local Names in Macros
The special symbol "~" is used in macro definitions to specify a local name that will be expanded into a
unique name each time the macro is called. For example, the name ~MyName will be replaced with the

 58

~number~MyName, where the number is a 4-digit sequential number of the current macro call in the
source file.

Note: such names can not be declared as public or external, neither can they represent segment names.

Note: the "~" symbol is also used as the bitwise inversion (one's complement) in the MCA-430.
Therefore, if you need to use the bitwise inversion operation within macros, you should use the .INV
operator.

Example:

.EXTRNB (data)foo

.ASEG Regs,data

.ORG 020h
P1IN .DSB
wait_P0IN .MACRO val
~label:
 cmp.b val,P1IN
 jnz ~label
.ENDMAC
.RSEG MyCode,code
wait_P1IN #33
wait_P1IN foo
.END

Listing:

 1 .EXTRNB (data)foo
 2 .ASEG Regs,data
 3 00000010 .ORG 020h
 4 00000010 P0IN .DSB
 5 wait_P1IN .MACRO val
10 .RSEG MyCode,code
11 00000000 wait_P1IN #33
 + 00000000 ~0001~label:
 + 00000000 F0902100 cmp.b #33,P1IN
 00000004 0C00
 + 00000006 FC23 jnz ~0001~label
 +
12 00000008 wait_P1IN foo
 + 00000008 ~0002~label:
 + 00000008 D090F6FF cmp.b foo,P1IN
 0000000C 0400
 + 0000000E FC23 jnz ~0002~label
 +
13 .END

2.7.4. Repeating Blocks
Repeating blocks are a tool that allows organizing repetition of part of the code without the need to write
the same code several times. The repeating block is always expanded in the same place where it is
defined. Special repeating block declaration Assembler directives (.REPT, .IRP, and .IRPC) provide a
way to use a set of arguments that will consequently replace the formal parameter in the repetitions.

Repeating block has the following syntax:

header
body
.ENDMAC

 59

The body contains any number of statements, including other repeating blocks or macro definitions. The
.ENDMAC is the directive that indicates the end of the body and the repeating block. The header is one
of three directives: .REPT, .IRP, or .IRPC.

Repeating blocks are a special case of macros. In fact, they are processed by the MCA-430 in a very
similar way to macros, with slight differences.

2.7.4. 1. .REPT Directive
Syntax:

.REPT expression

This directive instructs the Assembler to repeat a repeating block body the number of times specified by
expression. The expression must be absolute and contain no forward references. The value of the
expression must be within the 0-65535 range.

Example:

.RSEG CSEG,code
PARM = 0
.REPT 5
.dcb PARM
PARM = PARM + 1
.ENDMAC
.END

Listing:

1 .lstexp +
2 .RSEG CSEG,code
3 00000000 PARM = 0
4 .REPT 5
+ 00000000 00 .dcb PARM
+ 00000001 PARM = PARM + 1
+ 00000001 01 .dcb PARM
+ 00000002 PARM = PARM + 1
+ 00000002 02 .dcb PARM
+ 00000003 PARM = PARM + 1
+ 00000003 03 .dcb PARM
+ 00000004 PARM = PARM + 1
+ 00000004 04 .dcb PARM
+ 00000005 PARM = PARM + 1
8 .END

2.7.4. 2. .IRP Directive
Syntax:

.IRP formal_parameter,(actual_arguments)

Consequently repeats the repeating block body with each of actual_arguments. Each time the block is
assembled, the next actual argument in the list becomes the substitute for formal_parameter. The number
of repetitions equals to the number of actual arguments. Actual arguments must be separated by commas;
number of arguments may not exceed 32.

Example:

.RSEG CSEG,code

.IRP PARM,(25,36,47,58,69)

.dcb PARM

 60

.ENDMAC

.END

Listing:

1 .lstexp +
2 .RSEG CSEG,code
3 .IRP PARM,(25,36,47,58,69)
+ 00000000 19 .dcb 25
+ 00000001 24 .dcb 36
+ 00000002 2F .dcb 47
+ 00000003 3A .dcb 58
+ 00000004 45 .dcb 69
5 .ENDMAC
6 .END

2.7.4. 3. .IRPC Directive
Syntax:

.IRPC formal_parameter, 'string'

Consequently repeats the repeating block body with each of the characters in the string. Number of
repetitions is determined by the number of characters in the string. Each time, the specified formal
parameter is replaced with the next character enclosed in single quotes, i.e. with a string containing one
character. The length of the string is limited to 400 characters.

Example:

.RSEG CSEG,code

.IRPC PARM,'HELLO'

.dcb PARM

.ENDMAC

.END

Listing:

1 .lstexp +
2 .RSEG CSEG,code
3 .IRPC PARM,'HELLO'
+ 00000000 48 .dcb 'H'
+ 00000001 45 .dcb 'E'
+ 00000002 4C .dcb 'L'
+ 00000003 4C .dcb 'L'
+ 00000004 4F .dcb 'O'
5 .ENDMAC
6 .END

You can also use .PARM operator to get the text of the actual arguments inside repeating blocks. Some
special operators and other special features can also be used in macros. See details for the .BLANK and
.PARM operators (see Macro Operators, Chapter 2) and the .NPARMS directive, earlier in this chapter.

2.7.5. Special Characters in Macros and Repeating Blocks
Special characters are symbols that you can use to implement certain programming techniques that are
useful for making the code shorter, more self-descriptive, and less erroneous. For instance, you may want
to call a macro from another macro or use a few variables in a repeating block that vary only in the last
digit. The following special characters are used in macro and repeating block processing: <>, ^, {}, and
%.

 61

2.7.5. 1. Passing Actual Parameters (<>)
Name, expression, or character string are normally passed as actual arguments. If it is necessary to pass a
parameter that contains separators (for example, commas or spaces) and which is not a character string (is
not enclosed in single quotes), this parameter must be enclosed in the angular brackets: "<" and ">".

Every time a parameter in the angular brackets is passed to a macro, the brackets are removed by the
macro preprocessor. Therefore, a parameter that needs to be passed from within one macro to another
should be enclosed in double angular brackets: <<1,2>>.

Example:

CAT .MACRO par1
.DCB par1
.ENDMAC
RAT .MACRO par1,par2
CAT par1
.DCW par2
.ENDMAC
.RSEG CSEG,code
RAT 0,1
RAT <<3+1,4+2>>,<7+8,9+10>
.END

Listing:

 1 CAT .MACRO par1
 4 RAT .MACRO par1,par2
 8 .RSEG CSEG,code
 9 00000000 RAT 0,1
 + 00000000 CAT 0
 + 00000000 00 .DCB 0
 +
 + 00000002 0100 .DCW 1
 +
10 00000004 RAT <<3+1,4+2>>,<7+8,9+10>
 + 00000004 CAT <3+1,4+2>
 + 00000004 0406 .DCB 3+1,4+2
 +
 + 00000006 0F001300 .DCW 7+8,9+10
 +
11 .END

2.7.5. 2. Actual Parameters and Text Concatenation in Macros (^)
The "^" character in macros and repeating blocks is used for concatenation. If there is the "^" character on
the left (right) of the formal parameter in a macro definition, it is removed when the macro is expanded,
and the corresponding actual argument is concatenated with the text preceding (following) the "^"
character. Spaces and tabs adjacent to "^" do not affect concatenation in any way, i.e. when macro is
expanded, the spaces and tabs are removed with "^". In other words, the "^" character applied to a formal
parameter in a macro definition works as a special concatenation operator.

Note that "^" is also used as a bitwise logical XOR operation, so if a bitwise logical XOR is to be applied
to a formal parameter in macro, the .XOR operator must be used.

Note, concatenation inside character strings enclosed in quotes does not work. Thereby, if a macro
definition contains the following text:

'^parameter^'

where parameter is a formal parameter name then this string will not be modified at macro expansion.

 62

Example:

.lstexp +
Const_66 .equ 1
CONCAT .MACRO p1,p2
label_ ^ p1:
 mov #Const_ ^ p2,R5
.ENDMAC
.RSEG MyCode,code
CONCAT 55,66
.END

Listing:

1 .lstexp +
2 00000001 Const_66 .equ 1
3 CONCAT .MACRO p1,p2
7 .RSEG MyCode,code
8 00000000 CONCAT 55,66
+ 00000000 label_55:
+ 00000000 1543 mov #Const_66,R5
+
9 .END

Actual arguments can not be concatenated with the text starting with a number:

X .MACRO Y
mov #0,Y ^ 2_lo ;concatenation will not occur here
mov #0,Y ^ _2_lo ;but will occur here
.ENDMCA

2.7.5. 3. Parameter-to-String Conversion ({})
If a formal parameter in a macro or a repeating block definition is enclosed in braces ({}), the braces will
be replaced with single quotes when the macro or repeated block is expanded. This operation is useful
when an actual argument needs to be converted to a string after it has been passed to macro.

Spaces and tabs placed between the braces and formal parameters are ignored and removed with the "{"
and "}" characters.

Example:

BOO .MACRO p1
label_ ^ p1 .DCB 'Actual parameter: ',{p1},0
.ENDMAC
.RSEG MyCode,code
BOO lambada
.END

Listing:

1 BOO .MACRO p1
4 .RSEG MyCode,code
5 00000000 BOO lambada
+ 00000000 41637475 label_lambada .DCB 'Actual parameter: ','lambada',0
 00000004 616C2070
 00000008 6172616D
 0000000C 65746572
 00000010 3A206C61
 00000014 6D626164

 63

 00000018 6100
+
6 .END

2.7.5. 4. Expression-to-Value Conversion in Macro Calls (%)
When a percentage sign % is put before an actual argument in a macro call, the argument value is
computed by the Assembler. Instead of replacing the formal parameter with the actual argument itself, the
Assembler calculates the actual argument and then puts in the calculated value.

Decimal representation is used in substitution with leading zeroes removed. The actual argument that the
% sign is used with, must be an absolute expression with no forward references.

Example:

MOO .MACRO p1
label_ ^ p1: mov #p1,R5
.ENDMAC
.RSEG MyCode,code
MOO %66+22
.END

Listing:

1 MOO .MACRO p1
4 .RSEG MyCode,code
5 00000000 MOO %66+22
+ 00000000 35405800 label_88: mov #88,R5
+
6 .END

2.7.6. Nested Macro Calls and Definitions
In a macro definition, you can specify a call to another macro that has been defined. The result will
appear when the parent macro is called. The maximum nesting level is limited only by the available
memory space.

Repeating blocks and macro definitions can contain other repeating blocks. The maximum nesting level
of the repeating blocks is limited only the available working memory.

Note: the MCA-430 does not support nesting macro definitions in other macro definitions or repeating
blocks.

2.8. TI MSP430 Architecture Support

2.8.1. Operand Attributes Checking in Instructions
The Assembler performs checking of the operand attributes to detect improper use of operand(s) with the
single-operand and double-operand instructions, as well as conditional jumps. For example, if a byte
operation instruction is used with an operand with the WORD 'operand type' attribute, the Assembler will
produce a warning message.

2.8.1. 1. Double-Operand Instructions
If symbolic or absolute addressing modes are used, the Assembler checks that the 'operand type' attribute
of source/destination operand is BYTE in byte instructions and WORD in word instructions. If a type
mismatch is detected then the Assembler produces a warning message. If symbolic or absolute addressing
mode is used with the destination operand, the Assembler checks that the 'allocation' attribute of the
operand is data. If the 'allocation' attribute is code then the Assembler produces a warning about an
attempt to modify constant data. These warnings can be suppressed by the -a Assembler option.

 64

The Assembler/Linker controls that the value of operand in immediate addressing mode is within 0-0FFh
in byte instructions and within 0-0FFFFh in word instructions. If the Assembler (or the Linker, if value is
absolute) estimates that the value of an operand is out of allowable range, it produces the error message.
Such Assembler diagnostic message can not be disabled with the -a Assembler option.

2.8.1. 2. Single-Operand Instructions
If symbolic or absolute addressing modes are used, the Assembler checks that the 'operand type' attribute
of the operand is BYTE in byte instructions (RRA.B, RRC.B) and WORD in word instructions (RRA,
RRC, SWPB, SXT). Also, when symbolic or absolute addressing modes are used with these instructions,
the Assembler checks that the 'allocation' attribute of the operand is data. Warning messages are
produced if a type mismatch or an allocation mismatch is detected. Such warnings can be suppressed by
the -a Assembler option. The Assembler checks that the immediate operand addressing mode is never
used with the RRA, RRC, SWPB, and SXT instructions, as this can lead to unpredictable program
operation.

The PUSH instruction operand attributes are checked similar to double operand instruction source
operand attributes.

Allowable attributes of the CALL instruction operand:

Addressing mode Operand Operand Type Allocation Value Range
Direct Rm – – –

Index X(Rm) Any Any 0..0FFFFh

Symbolic ADDR WORD code, data 200h..0FFFFh

Absolute &ADDR WORD code, data 200h..0FFFFh

Indirect,
Indirect auto increment

@Rm
@Rm+

– – –

Immediate #N UNTYPED code, data 200h..0FFFFh

The Assembler checks allocation attribute of operands in immediate addressing mode in the CALL
instruction. If such operand has the allocation attribute data and the operand is not a label in a segment
defined in the current module using the extended format of segment declaration directive, then a warning
message is produced. Setting the -r Assembler option suppresses such warnings.

2.8.1. 3. Conditional Jumps
The Assembler will try to detect a jump made to the data segment. When a name or label is used as the
jump destination in JEQ/JZ, JNE/JNZ, JC, JNC, JN, JGE, JL, and JMP instructions, the Assembler
checks that the allocation attribute of the name is code. In other cases, the Assembler produces a warning
message.

The Assembler checks that:

- the destination address is aligned on even boundary;
- the value of operand is within (-1024+PCold+2)..(+1022+PCold+2);
- the jump destination is below the 64K boundary and above the 0x200h address, which is the

upper boundary of address range reserved for the SFRs and peripheral modules.

If an external name is used as operand, the above checks are performed by the Linker.

2.8.1. 4. Emulated Instructions
Allowable attributes of the BR instruction operand are the same as of the CALL instruction operand.
Other emulated instructions operands undergo the same verification as the destination operands in double
operand instructions.

 65

2.8.2. Alignment
All instructions are aligned on even addresses, i.e. word boundary. When instruction is generated and the
program counter value is odd, the Assembler increments the program counter.

Bytes can be located at even or odd addresses. Words can be located only at even addresses. The
Assembler performs alignment of words on even addresses. If an external byte operand is located at an
odd address and is used in the current module as operand in a word instruction, the Linker detects
misalignment and produces the "alignment error" message.

2.8.3. Implementation of Immediate Addressing
When immediate addressing mode is used and the operand is one of the -1, 0, 1, 2, 4, and 8 values, the
Assembler replaces such operand with an operand in direct addressing mode using one of the two
constant generator registers R2 and R3.

Example 1 – Immediate value is in the set of generated constants:

MOV #4,R12
replaced with:
MOV @R2,R12

Example 2 – Immediate value is not in the set of generated constants:

MOV #44,R12
replaced with:
MOV @PC+,R12
.DCW 44h

Note, if the PUSH instruction is used with the "4" and "8" values, the constant generator registers are not
used due to the known "CPU4" error in the MSP430.

2.9. Programming with MCA-430

2.9.1. SFRs and Peripheral Module Registers
The Special Function Registers (SFRs) and peripheral devices are mapped into lower 512 memory
addresses of the DATA address space. Thereby, the 0-1FFh address range is always reserved to prevent
the Linker from allocating relocatable segments in that range. The supplied include files containing
special function registers and bits definitions are located in the Inc\ directory. Note that when working
with the IDE there is no need to manually specify this file in the program, as the necessary include file is
always included in the program.

2.9.2. Stack Initialization
The stack pointer (SP) must be initialized before any stack operations are performed. For this purpose,
you need to declare a stack segment in the DATA address space, set the size of the stack, and set the SP
register equal to the end address of the stack segment (stack is filled from the upper addresses down to the
lower addresses). The size of the stack segment can be set using the .DS directive in the program,
reserving necessary address range. Example:

.rseg STACK, data ;declare the stack segment
 .ds 100h ;reserve 256 bytes in the STACK segment

.rseg CODESEG, code
start: ;beginning of the program
...
 mov #.sfe STACK, R5 ;load the end address of STACK to R5
 add #1, R5 ;round up to even address
 and 0FFFEh, R5
 mov R5, SP ;load R5 to Stack Pointer

 66

You can also use the Linker -Z command line option to set the size of the stack segment or use the
appropriate setting in the IDE (see IDE Online Help for details). Example:

-Z STACK(100h) #set the STACK segment size to 256 bytes

2.9.3. Setting Interrupt Vectors
The upper 16 words of the CODE address space starting from 0FFE0h up to 0FFFEh are always reserved
for storing hardware interrupt vectors (i.e., interrupt service routine entry addresses). The top interrupt
vector located at the 0FFFEh address has the highest priority and always points to the start address of the
program. The interrupt vectors should be initialized with proper values of the interrupt service routine
(ISR) entry addresses. Example: assume the INT_5_ISR routine is to be assigned to service the interrupt
with priority #10 (Watchdog timer). The following is the sample code for initialization of the interrupt
vector:

.aseg INTVEC, code ;Start/select interrupt vector segment.

.org 0FFF4h ;Set program counter equal to
 ;the address of the interrupt vector.
.db2 INT_5_ISR ;Initialize the interrupt vector with
 ;the ISR entry address.

In the above example the program must have the code for servicing the interrupt with priority #10 starting
from the address 0FF00h and ending with the RETI instruction.

See MCC-430 C Compiler User’s Guide for information about adding interrupt handling routines to the
mixed C/Assembler program.

2.9.4. Assembly Program Example
The following example demonstrates the basic steps in writing an assembler program:

;Initialization of the start procedure:
.pmodule ?RESET
.aseg RESET, code
.extrnf MAIN ;MAIN is the start function of the program
.org 0FFFEh
.dcw MAIN ;Set the reset vector to MAIN
.endmod

;'Program' module declaration:
.pmodule PROG
.include 'c1331.inc'
.rseg STACK,data ;declare a segment for stack
.rseg CODESEG,code ;declare a segment for code

;Declare segment for variables in the RAM:
.rseg DATASEG,data
MyByteVar .dsb ;byte (unsigned char)
MyWordVar .dsw ;word (unsigned int)
MyDwordVar .dsd ;dword (unsigned long)
.public MyWordVar ;make accessible for other modules

;Define an array of words:
MyArrayLength .equ 50
MyArray .dsi MyArrayLength

;Declare a segment for tables of constants:
.rseg CONST,code
TableByte .dcb 55,66
 .dcb 77,88
TableFloat .dcr "3.3, "3.4, "3.5
 .dcr "3.6, "3.7, "3.8

 67

MyString .dcb 'Hello, world!'

.rseg CODESEG ;switch to code segment
.func MAIN ;start main function

;The function MAIN should be declared public, then its address will be
;written as the reset vector (jump is made to MAIN upon reset)

.public MAIN

;Stack initialization:
mov #.sfe STACK, R5 ;load end address ot the STACK to R5
add #1, R5 ;round up to even boundary
and #0FFFEh, R5
mov R5, SP ;load R5 to Stack Pointer

mov #55h, R5 ;just some sample code
mov #33h, R6 ;
add R5,R6 ;
clr MyWordVar ;
mov.b #20, MyByteVar
mov.b MyByteVar, .BYTE MyWordVar
swpb MyWordVar
bic MyWordVar, R6
;…
.extrnf MY_PROCEDURE ;declare an external function
call #MY_PROCEDURE ;call the function
jmp $
.endf ;end of the MAIN function
.endmod ;end of module

.PMODULE MOD1 ;open another module
.extrnw (data)MyWordVar ;external WORD variable in the RAM
.public MY_PROCEDURE ;declare this function as public
.rseg MYCODE,code ;open code segment
.func MY_PROCEDURE ;start function
 inc MyWordVar
; …
 ret
.endf ;end of function
.end ;end of last module and end of file

.LMODULE LIB1 ;LIB1 will be linked only if
.rseg LIBCODE, code ;the function MyLibFunc
.func MyLibFunc ;is used in the program
.public MyLibFunc
;…
ret
.endf
.end

 68

Chapter 3. Linker

The MCLINK Linker links modules contained in object files and libraries, into a single executable file.
Linking process consists of the following stages:

§ Establishing a set of modules for linking and resolving external references
§ Determining the size and composition of the address spaces
§ Determining the size and composition of segments
§ Allocation of segments in appropriate address spaces
§ Calculation of absolute values of the names defined in relocatable segments
§ Evaluation of relocatable external references values
§ Generating the output files and the report (MAP-file)

3.1. Command Line Format
Usage:

MCLINK [options] [prefix] obj_or_lib_file [prefix] obj_or_lib_file …

Obj_or_lib_file is an object file produced by the Assembler or Compiler or a library made with the
MCLIB Librarian. Options each start with the "-" (minus character), followed by a flag letter which
selects the option. Options may be given in any order or omitted entirely. The flag letter may be followed
(with an intervening blank) by additional text relating to the option. Options are separated from each other
and from the source name by blanks. Options are case sensitive. The Linker options can also be set from
the IDE (see IDE Online Help).

If the object files have standard filename extensions (.MCO or .MCL) then they can be omitted.

The following command line options are accepted by the MCLINK:

Option Description
-A
-C
-K
-N
-S
-E
-Opath
-F
-H
-Z
-m
-M
-t
-w
-h or -?
-p, -l, -o
@filename

Define the address space
Enable code generating in the address space
Reserve ranges in the address spaces with the specified allocation
Reserve ranges in the address space
Segment allocation
Specify output file name and target directory
Specify search paths for object files
Specify output file format
Specify filename extension for HEX-file
Increase segment size
Generate a MAP-file
Skip the specified section in MAP-file
Disable type checking in the external names
Linker warnings control
Display brief description of options
Prefixes: change the module types
Append a response file to the command line

 69

3.2. Modules for Linking
At the first stage, the Linker determines the set of modules to be linked. For this purpose, the Linker scans
one after one object and library files that are specified in the command line. Normally, this requires more
than one pass.

Note that all program modules are included in the list of modules for linking on the first pass.

On the second pass, the Linker checks the list of modules and adds any library modules to the list only if
any public names defined in these modules can resolve external references yet unresolved.

At the end of each pass, the Linker checks for the following conditions satisfied:

§ If all the external references are resolved, the Linker stops scanning input files and proceeds to

the next linking phase. If there are still some unresolved references, the Linker initiates the next
pass.

§ If at a certain pass the Linker has not added any more modules to the list and yet there are some
unresolved references, scanning of the input files is stopped and an error message is produced.

This multi-pass procedure enables the user to list the library files in the command line in any desirable
order.

Note: all program modules are linked always prior to library modules. All library modules, in turn, are
always linked prior to low-priority library modules.

It takes less time for the Linker to determine if a module needs to be linked when the module is located in
a library rather than when it is located in an object file. The reason for this is a special header in the
library, which contains the list of external and public names used in all modules included in the library.

See also: Chapter 4. MCLIB Librarian.

3.3. Resolving External References and Type Checking
The Linker resolves references to external names in a module by searching for matching public names in
other modules. If a matching public name is found, all attributes ('allocation', 'operand type', 'type') of the
public name and the external name are compared. If any one of the attribute value is varying, the warning
of a possible error is produce. Type checking is disabled if the -t command line option is specified.

Note, an error message is displayed if the same public names are declared in two different modules.

Relocatable external references like any other relocatable references are resolved only after all segments
have been allocated.

3.4. Setting up Address Spaces
The Linker always sets up the following standard address spaces:

Address Space Allowed Address Range
CODE 0200h – 0FFFFh
DATA 0000h – 0FBFFh

The size of the standard address space can be changed using the Linker -A command line option to
preserve some area in the memory for special purposes.

See also: Address Spaces, Chapter 1.

 70

3.5. Linking Relocatable and Overlay Segments
After the set of modules for linking has been established, the Linker examines these modules and defines
the names of all segments in the program. Segments that are used in several modules should have
identical definitions in each module (and therefore must have identical type – absolute, relocatable or
overlay – and identical allocation attribute) otherwise the error message is generated.

Relocatable segments. The Linker arranges the fragments in a single relocatable segment (a fragment is
a part of a segment defined in one module). When a fragment is added, its alignment attribute has an
effect, thus the resulting segment may contain unused gaps between the fragments. After binding is
completed, the Linker knows the size and the alignment attribute of the segment.

Overlay segments. The Linker overlays all fragments with identical definitions instead of concatenating
these fragments. The Linker takes the size of the largest fragment and sets it for the segment size. All
overlay-type fragments with identical definitions are allocated starting from the same physical address.

See also: Segment Declaration and Selection in Assembler Directives, Chapter 2.

3.6. Segment Allocation
After binding of the relocatable segments is completed, the Linker starts allocating segments in the
address spaces.
You can specify the left or right boundary for a segment using the Linker -S options.

The main principles of the segment allocation process are the following:

§ The Linker checks whether address ranges of the address spaces CODE and DATA intersect. If

they do, the Linker generates an error message.
§ The segments specified in the Linker -S options are allocated first, and then the rest of the

segments are allocated automatically.
§ Absolute segments are automatically taken into account when relocatable and overlay segments

are allocated. Address area occupied by the absolute segment with a particular allocation attribute
is preserved in the address spaces with that allocation.

§ The Linker always allocates relocatable segments so that they do not overlap with each other.
§ When allocating relocatable and overlay segments, the Linker considers their alignment attributes

(see also the .ALIGN directive description in Address Control section in Chapter 2).

If the left boundary (start address) or the right boundary (end address) is specified for a relocatable
segment then the Linker pushes the segment as close to the boundary as possible. You may not specify
boundaries for the absolute segments. A segment that is not specified in any of the -S options is
automatically allocated in the appropriate address space. If such a segment is relocatable, it is
automatically put as close to the lower address of the address space as possible.

After all segments have been allocated, all names (including public names) obtain absolute values.

 71

Chapter 4. MCLIB Librarian
Library or a library file is a collection of object modules, which is created from the object files using
MCLIB Library Management utility. Object file may contain one or several modules but the library is
more than just a set of object modules. The main advantage of libraries compared to object files is a
special header called catalogue, which is present in libraries and used by the Linker for scanning the
libraries. This header enables the Linker to scan the libraries much faster, which is critical when linking
large projects.

MCA-430 Assembler supports three types of modules: program modules, library modules, and low-
priority library modules. After all of the individual input files (object or library files that are specified in
the MCLINK command line) have been scanned and all found program modules have been linked
unconditionally, the Linker tries to resolve any unresolved external references by including files from the
libraries. This process is iterative. If the Linker has included a file from the library on one pass, it should
make another pass to resolve any symbols required by the newly included files. If the Linker is able to
resolve a reference with any of the usual libraries, it starts to scan low priority libraries. Low-priority
library modules are not included in the program unless they contain any public names needed to resolve
the external references yet unresolved with usual library modules.

In Assembler source file, module types are defined by the header directives .PMODULE, .LMODULE,
or .LMODULE2. Module type can be temporarily redefined with the Linker command line filename
prefixes -p, -l, and -o. These prefixes instruct the Linker to consider all modules in a specific object file
to be program, library, or low-priority library modules respectively. To permanently change the type of a
module residing in a library, use MCLIB.

The MCLIB Librarian is a tool for manipulating object files and creating, modifying, and servicing
libraries. The Librarian can add, delete, extract, and replace modules in libraries as well as change
attributes of the modules. Using the Librarian helps to convey the modular programming approach and
easier coordinate large and extensive team projects.

See also: Modules for Linking, Chapter 3; Module Declaration in section Assembler Directives,
Chapter 2.

4.1. Command Line Format
Usage:

MCLIB.EXE [option] [library_file] [object_file1] [object_file2] …
or

MCLIB.EXE [option] [library_file] [module1] [module2] …

The default library extension is .MCL.

Note, only one command line option can be specified for the Librarian at a time. In order to perform
several operations with a library, launch the MCLIB several times. All options are case sensitive.

The following command line options are accepted by the MCLIB:

Option Description
-a Add modules to library
-d Delete modules from library
-r Replace modules in library
-x Extract modules from library into object files
-X Extract modules from library into a single object file
-m Move modules from library into object files

 72

-M Move modules from library into a single object file
-l Display library header on the console
-P Assign “program” attribute to modules
-L Assign “library” attribute to modules
-O Assign “low-priority library” attribute to modules
-h or -? Display the list of the Librarian’s options on the console

@filename Append a response file to the command line

 73

Chapter 5. MCDUMP Object-to-Text Converter
The MCDUMP Object-to-Text Conversion utility (text dumper) is a universal tool providing access to
various source file formats: object files (.MCO), libraries (.MCL), and executable files (.MCE). The text
data is directed to the standard output device (console).

5.1. Command Line Format
Usage:

MCDUMP.EXE [option] library_or_object_file

If you specify no options then the contents of the entire file will be displayed on the screen. If more than
one option is specified, only the last one will have effect and the others will be ignored.

The following are the MCDUMP options:

Option Description
-e List external names and module names
-m List module names only
-p List public names and module names
-s List segment names and module names
-H List contents of library header
-r Do not replace numbers with symbols (raw mode)
-h or -? Display brief description of MCDUMP options on console

@filename Append a response file to the command line

 74

Appendix A. Assembler Directives Summary

Directive Description Section
= Define an assembler variable Symbol Definition
.ALIGN Align program counter Address Control
.ASEG Select/declare an absolute segment Segment Declaration and Selection
.BYTE Assign BYTE operand type to an UNTYPED

name
Assignment of Attributes to Name

.DB1 Initialize memory with byte values Memory Initialization

.DB2 Initialize memory with word (2 byte) values Memory Initialization

.DB4 Initialize memory with double word (4 byte)
values

Memory Initialization

.DCx Initialize memory with data of certain type Memory Initialization

.DEFINE Define a symbolic name for all modules in a file Symbol Definition

.DS Reserve the specified number of bytes Memory Reservation without
Initialization

.DSx Define a name of certain type Memory Reservation without
Initialization

.DWORD Assign DWORD operand type to a name of no
type

Assignment of Attributes to Name

.ELSE Continue a conditional assembly block – FALSE
part

Conditional Assembling

.END End module and source file Module Declaration

.ENDF End function definition Function Declaration

.ENDIF End a conditional assembly block Conditional Assembling

.ENDMAC End macro definition Macro Tools: Defining a Macro

.ENDMOD End module Module Declaration

.ENDSEG End segment Segment Declaration and Selection

.EQU Define a symbolic name for the current module Symbol Definition

.ERROR Display an error message on the console Miscellaneous Directives

.EXITM Terminate macro expansion Macro Tools: Defining a Macro

.EXTRN Declare an external name with type nothing Program Linkage

.EXTRNF Declares an external function Program Linkage

.EXTRNx Declares a typed external name Program Linkage

.FUNC Define an Assembler/C function Function Declaration

.IF Start a conditional assembly block – TRUE part Conditional Assembling
.INCLUDE Include a file into the source file Directive .INCLUDE
.IRP Repeating block with arguments Macro Tools: Repeating Blocks
.IRPC Repeating block with string of characters as

arguments
Macro Tools: Repeating Blocks

.LABELx Define a label of certain type Symbol Definition

.LMODULE Begin a library module Module Declaration

 75

.LMODULE2 Begin a low-priority library module Module Declaration

.LNKCMD Pass parameters to Linker Miscellaneous Directives

.LSTCND Control output of false conditionals Listing Control

.LSTEXP Control output of macro expansions Listing Control

.LSTMAC Control output of macro definitions Listing Control

.LSTOUT Control listing output Listing Control

.LSTWID Enable "wide" listing format Listing Control

.LSTXRF Control output of cross-references Listing Control

.MACRO Start macro definition Macro Tools: Defining a Macro

.MESSAGE Display a text message on the console Miscellaneous Directives

.OBJREC Write sequence of bytes in the output object file Miscellaneous Directives

.ORG Set program counter Address Control

.OSEG Select/declare an overlay segment Segment Declaration and Selection

.PAGE Insert a page break Listing Control

.PMODULE Begin a program module Module Declaration

.PUBLIC Declare a public name Program Linkage

.REPT Start a repeating block Macro Tools: Repeating Blocks
.RSEG Select/declare a relocatable segment Segment Declaration and Selection
.SET Define an assembler variable Symbol Definition

.STITL Specify a subtitle Listing Control
.TITL Specify a title Listing Control
.TYPE Assign type to an untyped name Assignment of Attributes to Name
.WARNING Display a warning message on the console Miscellaneous Directives
.WORD Assign WORD operand type to a name of no

type
Assignment of Attributes to Name

 76

Appendix B. Assembler Operators and Variables Summary
Operator Description Section
- Arithmetic subtraction Addition and Subtraction
- Two's complement Bitwise Operators
~ or .INV One's complement (bitwise inversion) Bitwise Operators
& or .AND Bitwise logical AND Bitwise Operators
* Multiplication Multiplication and Division
/ Unsigned division Multiplication and Division
^ or .XOR Bitwise logical XOR Bitwise Operators
| or .OR Bitwise logical OR Bitwise Operators
+ Arithmetic addition Addition and Subtraction
<, .LT Signed LESS THAN Relational Operators
<=, .LE Signed LESS THAN OR EQUAL Relational Operators
>, .GT Signed GREATER THAN Relational Operators
>=, .GE Signed GREATER THAN OR EQUAL Relational Operators
<>, .NE NOT EQUAL Relational Operators
==, .EQ EQUAL Relational Operators
.ALLOCATION Allocation of the operand Miscellaneous Operators

.BLANK Macro argument is empty (true/false) Macro Tools: Defining a Macro
.BYTE BYTE type assignment to operand Setting Operand Type of Expression
.BYTE3 Lower byte of the operand’s higher word Byte/Word Extraction Operators
.BYTE4 Higher byte of the operand’s higher word Byte/Word Extraction Operators
.DATE Current date and time Miscellaneous Operators
.DEFINED Checks if the name supplied as operand is

defined
Miscellaneous Operators

.DWORD DWORD type assignment to operand Setting Operand Type of Expression

.HIGH Higher byte of the operand Byte/Word Extraction Operators
.HWRD Higher word of the operand Byte/Word Extraction Operators
.IDIV Signed division Multiplication and Division
.IMOD Signed remainder selection Multiplication and Division
.LOW Lower byte of the operand Byte/Word Extraction Operators
.LWRD Lower word of the operand Byte/Word Extraction Operators
.MOD Unsigned remainder selection Multiplication and Division
.NOT Logical negation Bitwise Operators
.OFFSET Displacement of the operand from segment's

origin
Miscellaneous Operators

.OPTYPE Operand type of expression supplied as
operand

Miscellaneous Operators

.PARM Text of actual macro argument specified by
operand

Macro Tools: Defining a Macro

 77

.SFB Start address of the segment Miscellaneous Operators
.SFE End address of the segment Miscellaneous Operators
.SHL Arithmetic left shift Shift Operators
.SHR Arithmetic right shift Shift Operators
.SHRL Logical right shift Shift Operators
.TYPE Type of the name specified as operand Miscellaneous Operators
.UGT Unsigned GREATER THAN Relational Operators
.ULT Unsigned LESS THAN Relational Operators
.UNTYPED UNTYPED type assignment to operand Setting Operand Type of Expression
.WORD WORD type assignment to operand Setting Operand Type of Expression

Assembler predefined variables:

Variable Returned Value Section
.NPARMS The number of actual arguments in a macro call Macro Tools
.UPPERCASEONLYMODE

True/False depending on the current case
sensitivity mode

Predefined Variables

 78

Appendix C. Assembler Command Line Interface

@filename
Include the contents of the file filename (response file) when processing the command line. There are no
size limits for the response file. This makes it possible to specify any number of command line options in
it.

There should be no spaces between @ and filename. The <CR> (carriage return) and <LF> (line feed)
characters are ignored in the response file. Comments start with the "#" symbol and end with the end of
line. If not specified, the extension is expected to be .OPL.

-Ipath: Search for include files in the specified directories
Specifies the search paths for include files that are specified without path in the source text. The files are
first searched in the current directory and then in the directories listed in this option. The directories are
searched in the order listed, consequently until the file is found. Directory names are separated by
semicolons.

For example, if the "-I..\include;c:\mca430\inc;loc" option is specified, the .INCLUDE
directives in the source text will have the following effect:

.INCLUDE 'mem.inc' ;MEM.INC will be searched in the following
 ;directories: current, then
 ;"..\INCLUDE" ("INCLUDE" in the parent
 ;directory), then
 ;"C:\MCA430\INC", then
 ;"LOC" subdirectory of the current directory.

.INCLUDE 'lib\config.inc' ;CONFIG.INC will be searched in the following
 ;directories:
 ;"LIB" subdirectory of current directory, then
 ;"..\INCLUDE\LIB", then
 ;"C:\MCA430\INC\LIB", then
 ;"LOC\LIB" (two levels below current).

-u: Ignore character case
If this option is specified in the command line, the Assembler converts all user identifiers (labels, segment
names, macro names) to upper case symbols. This option eases migration from the case-insensitive
assemblers provided by other vendors to the MCA-430 Assembler.

If the option is not specified, the Assembler will work in a case-sensitive mode and distinguish upper and
lower case letters in symbolic names (for example, BUFFER and BuFFer will be different identifiers).

See also: .UPPERCASEONLYMODE in Predefined Variables, Chapter 2.

-d: Generate debugging information
Include debugging information in the object file. This information is used for the source-level debugging
and allows, for example, the Linker to refer in error messages to a position in the source file. By default,
the debug information is not included in the object file.

-a: Disable instruction operand type checking
When processing instructions, the Assembler checks if the instruction operand attributes match the
instructions. For example, when processing a jump instruction, the Assembler checks if the operand
(jump destination address) has code allocation. Attribute mismatch results in generating warnings. Most
of these warnings can be disabled with the -a option.

 79

It is not recommend using this option when assembling generic assembler programs since operand
attribute checking helps to detect a large number of accidental and logical errors.

On the other hand, using this option is recommended when assembling programs that were generated by
some intelligent software. An example is a disassembled program text where numbers (addresses of
variables) are used instead of symbolic names of variables. This option allows disabling most of the
warnings which are irrelevant in this case. See also description of the MCC-430 -g option.

-r: Disable detection of jumps made to the data memory
This option disables warnings about passing control to data memory. This warning is produced when the
operand in a jump (or in CALL or BR instruction with immediate addressing) has allocation data, except
when this operand is a label in a segment declared in the current module using the extended segment
declaration format.

-l: Generate listing file
Generate a listing file with the same name as the source file and the extension .LST. By default, the
listing file is not generated. Example:

MCA430.EXE –l MYPROG.MCA ;MYPROG.LST will be generated

See also: the .LSTOUT directive under Listing Control in Assembler Directives, Chapter 2.

-Jpath: Place object file in the specified directory
By default, the Assembler places the output object file(s) in the current directory. This option instructs the
Assembler to use a different directory.

Example:

-Jobj

Assembler will place object file(s) in the OBJ subdirectory in the current directory. This subdirectory
must exist.

-Lpath: Place listing file in the specified directory
By default, the Assembler places listing files in the current directory. This option instructs the Assembler
to use a different directory.

Example:

-Lc:\tmp\listings

-x: Include cross-reference table in the listing
See the .LSTXRF directive under Listing Control in Assembler Directives, Chapter 2.

-c: Include false conditionals in the listing
See the .LSTCND directive under Listing Control in Assembler Directives, Chapter 2.

-g: Include macro definitions in the listing
See the .LSTMAC directive under Listing Control in Assembler Directives, Chapter 2.

-e: Include macro expansions in the listing
Generate listing for the text of macro expansions. False conditionals located in macro expansions are
included in the listing only if listing generation is enabled for both macro expansions and false
conditionals. See also the .LSTEXP directive under Listing Control in Assembler Directives, Chapter 2.

 80

-w: “Wide” listing output
See the .LSTWID directive under Listing Control in Assembler Directives, Chapter 2.

-p: Split listing into 40 line pages
Split the listing file into pages of 40 lines in length. By default, the listing file is not split into pages.

-Pnn: Split listing into pages of the specified length
Split the listing file into pages of lengths set by nn. By default, the listing file is not split into pages.

-Enn: Terminate assembling after nn errors
Terminate assembling after nn errors have been detected. By default, all error messages are displayed
until the end of source file is reached.

-Wnn: Display not more than nn warnings
Stop displaying warnings after nn warnings have been given. If n is set to 0, the warnings are disabled
entirely. By default, warnings are enabled.

-b: Produce beep if error is detected
Produce a beep when an error is detected.

-s: Display the number of processed lines
Display the number of lines assembled. Only line numbers multiple of 8 are displayed. By default, the
line numbers are not shown. Note that on many computers the speed of assembling reduces significantly
when this option is enabled.

-h or -?: Display the list of options on the console
Display a brief description of options on the console. This information is also displayed if the Assembler
is run without parameters.

 81

Appendix D. MCA-430 Command Line Interface

@filename
Include the contents of the file filename (response file) when processing the command line. There are no
size limits for the response file. This makes it possible to specify any number of command line options in
it.

There should be no spaces between @ and filename. The <CR> (carriage return) and <LF> (line feed)
characters are ignored in the response file. Comments start with the "#" symbol and end with the end of
line. If not specified, the extension is expected to be .OPL.

-A: Define an address space
Usage:

-A (allocation)addr_space_name(range_list)

Addr_space_name is the name of the address space being defined. This name is defined by the user. If
you specify the name of a standard address space then the size of this address space will be redefined.

Allocation is the allocation attribute of the address space being defined. Range_list is the list of address
ranges allowed for using in this address space; the Linker will allocate segments only within these ranges.
The address ranges must be within the limits set for the address spaces with the specified allocation. For
details on address spaces limits, see Address Space Allocation Attributes in Chapter 1. Basic
Conceptions.

Range list syntax:

start_addr-end_addr[,start_addr-end_addr] …

Start_addr and end_addr can be specified in decimal, binary, octal, or hexadecimal format; binary values
should begin with 0 and end with "B" or "b"; octal values should begin with 0 and end with "Q" or "O"
(or "q" and "o", respectively); hexadecimal values should begin with 0 and end with "H" or "h".

Example:

-A (code)CODE(0F000H-0FFFFH)

In the above example, the Linker will redefine the size of the standard address space CODE. This address
space will have the address range 0F000H-0FFFFH (in bytes).

-C: Enable code generating in address space
Usage:

-C address_space_name

The Linker enables allocating code in the specified address space, in other words, enables code generating
in this space. The user should specify this option for the address spaces where executable code, constant
tables, etc. will be allocated. Code generating may not be enabled for the register address spaces.

If code generating is not enabled for a particular address space then only the segments that do not contain
code can be allocated in this address space, otherwise the Linker will generate an error message.

 82

-K: Reserve address ranges in address space with the specified allocation
Usage:

-K allocation(range_list)

Allocation is the allocation attribute of the address space. Range_list is the list of address ranges. See the
-A option for range_list syntax.

This option instructs the Linker to exclude the list of address ranges specified in the range_list from the
list of ranges that can accommodate relocatable segments. The -K option is mainly used to preserve space
for the absolute segments and avoid overlapping with the relocatable segments without the need to set
absolute addresses with the -S option.

Note, when an absolute segment is used in the source text the Assembler automatically passes this option
and corresponding address ranges to the Linker, therefore the user does not need to be careful about
relocatable segments overlapping with absolute segments.

-N: Reserve address ranges in the address space
Usage:

-N address_space_name(range_list)

Address_space_name is the name of the address space. Range_list is the list of address ranges. See the
-A option for range_list syntax.

The Linker excludes the address ranges specified in the range_list from address ranges that can
accommodate the relocatable segments.

-S: Segment allocation
Usage:

-S address_space_name(segment_list)

Address_space_name is the name of the address space. Segment_list is the list of segments to be
allocated in this address space; for relocatable segments you may specify a boundary, and the Linker will
put a segment as close to this boundary as possible.

Segment list syntax:

segname [{>,<}address][%pagesize] [,segname[{>,<}address][%pagesize]]…

The ">" character between segname and address instructs the Linker to allocate this segment starting
from the address. If it is not possible then the Linker will allocate the segment starting from the nearest
suitable address greater than the one specified.

The "<" character between segname and address instructs the Linker to allocate this segment ending at
the address. If it is not possible then the Linker will allocate the segment to end at the nearest suitable
address less than the one specified.

Note, start or end addresses can be specified for relocatable segments only.

The address can be specified in decimal, binary, octal, or hexadecimal format; binary values should begin
with "0" (zero) and end with "B" or "b"; octal values should begin with "0" (zero) and end with "Q" or
"O" (or "q" and "o", respectively); hexadecimal values should begin with "0" (zero) and end with "H" or
"h".

 83

Pagesize must be a numeric value multiple of the power of 2. If the pagesize is specified, the Linker
allocates the segment so that the whole segment fits on the page with the size specified. Ultimately, this
means that the segment must not cross the boundary of the page with the size pagesize, i.e. the segment
should be within the pagesize*n-pagesize*(n+1) range, where n=0.

Examples:

-S CODE(CODESEG1>0F000H,CODESEG2<0FF00H)
-S CODE(CODESEG3%512,CODESEG4%2048)

You can specify segment start/end address and page size at the same time:

-S CODE(CODESEG>0F0E0H%1024,CODESEG1<0FFA0H%2048)

-E: Specify output file name and target directory
Usage:

-E [path]filename

This option is used to specify the common name and the path for the output file(s). The filename
extension is automatically selected by the Linker according to the type of file being created. If you
specify the extension it will be ignored. If the path is not specified, output files will be created in the
current directory.

If the -E option is not specified, the output file name will be the same as the name of the first file in the
list of files to be linked. The same applies to path.

Example:

-E C:\Myproj\Project1

Output files will be created in the "C:\Myproj" directory the base filename will be "Project1".

-O: Specify the search paths for object files
Usage:

-Opath

This option specifies the directories where the Linker will search for the object and library files if they are
not found in the current directory and their names do not include paths. The directory names should be
separated by semicolons, for example:

-OC:\MCA430\lib;C:\Myproj\my_obj

First, the Linker will search for the files in the directory "C:\MCA430\lib" and then in the directory
"C:\Myproj\my_obj".

-F: Specify the output file format
Usage:

-F format [format] …

 84

This option specifies the output file format. If you specify more than one output formats then more than
one output files in appropriate formats will be generated. Below is the list of allowable formats:

M Phyton/MicroCOSM-ST executable file format
I Intel HEX-format
Z Debugging information in ZAX-format

Executable files in Phyton/MicroCOSM-ST format have the extension .MCE. HEX-files, by default, have
the extension .HEX; use the -H option to explicitly specify the extension for HEX-files.

Example:

-F MI #The Linker will create files in the MCE-format (for debugging)
 #and HEX-format (HEX-files can be used with any PROM programmer)

-H: Define the filename extension for HEX-file
Usage:

-H address_space_name(HEX-extension[,ZAX-extension])

This option allows you specify directly what extensions (instead of the default extensions) will be used
for the output HEX-files and ZAX-files containing debugging information.

Address_space_name is the address space name. HEX-extension sets the extension for the HEX-file
corresponding to the specified address space. ZAX-extension is an optional parameter that can be used to
specify the extension of the ZAX-file corresponding to the specified address space.

-Z: Increase segment size
Usage:

-Z segment_name(new_size)

This option makes it possible specifying the segment sizes at link time rather than in the source text,
which can be helpful in certain situations.

Segment_name is the segment name. The segment must be relocatable and contain no code. New_size is
the new segment size (in bytes). It should be greater than the original size of the segment (calculated as a
sum of sizes of all fragments of this segment from every module where this segment is used). Segment
size is specified in the same way as in the -A option.

Example:

-Z STACK(0100h) # sets stack size to 256 bytes

-m: Create a MAP-file
This option instructs the Linker to generate a MAP-file (Linker's report). A MAP-file has the same name
as the output file but with the .MAP extension.

-M: Omit specified section in MAP-file
Usage:

-M nn

This option can be used to skip putting unnecessary information in the MAP-file to make it better suitable
for further analysis of the Linker's work. This option can be specified multiple times with different
parameters. The list of available parameters is the following:

 85

0 original list of used Linker options
1 process of linking program modules
10 public/external names in program modules
2 process of adding library modules
20 public/external names in the linked library modules
21 list of unlinked library modules
3 complete set of Linker options
4 report on segment building
5 list of address spaces
6 report on the results of relocatable segments allocation
60 process of relocatable segments allocation
7 allocation map of address spaces (memory map)
8 table of public and external names
80 table of reserved/internal public and external names
9 report on output files

Recommended typical usage for most situations:

-M 10 # skip public/external names in program modules
-M 20 # skip public/external names in library modules
-M 21 # skip a list of unlinked library modules
-M 60 # skip the process of relocatable segments allocation
-M 80 # skip the list of reserved and internal names

-t: Disable type checking
Disables type checking while resolving external references.

-w: Linker warnings control
This option prevents the Linker from displaying the messages on the console about the automatic segment
allocation in the standard address spaces. Generally, automatic segment allocation is satisfactorily,
therefore usage of the -w option is advisable.

When two or more address spaces with the same allocation attribute are declared, the Linker displays
such warnings for all segments with that allocation, which are not specified in the Linker -S options.

-h or -?: Display the list of options on the console
These options instruct the Linker to display brief description of options on the console. The same occurs
when the Linker is launched without parameters.

-p, -l, -o: Prefixes changing module type
Usage:

{-p,-l,-o} object_or_library_file

Any of the -p, -l, or -o prefixes can be inserted before any of the files linked. These prefixes serve as
module type modifiers.

-p consider all modules in the file to be program modules
-l consider all modules in the file to be library modules
-o consider all modules in the file to be low priority modules

 86

Appendix E. MCLIB Command Line Interface

@filename
Include the contents of the file filename (response file) when processing the command line. There are no
size limits for the response file. This makes it possible to specify any number of command line options in
it.

There should be no spaces between @ and filename. The <CR> (carriage return) and <LF> (line feed)
characters are ignored in the response file. Comments start with the "#" symbol and end with the end of
line. If not specified, the extension is expected to be .OPL.

-a: Add modules to library
Usage:

-a library_file obj_file1 [obj_file2] …

Adds all modules from the specified object file(s) to the library with library_file name. If the library
library_name does not exist, it is created. If there is a module in existing library with the same name as
the name of one of the modules being added then the "Duplicate module" error occurs.

-d: Delete modules from library
Usage:

-d library_file module1 [module2] …

Deletes the specified module(s) from the library with library_file name. If the modules are not found,
then the "Unknown module" error occurs. The library_file must exist.

-r: Replace modules in library
Usage:

-r library_file obj_file1 [obj_file2] …

Updates the library replacing the modules in the library_file library with the modules that have the same
names from the specified object file(s). If the library library_name does not exist, it is created. If any
object file contains a module that is not in the library being updated, it is added to the library.

-x: Extract modules from library to object files
Usage:

-x library_file module1 [module2] …

Extracts modules from the library into object files. Modules are not deleted from the library. Each
extracted module is placed into a separate object file with extension .MCO. The name of the object file is
the same as the module name if it is 8 characters or less. Otherwise, the module name is truncated to 8
characters and set as the object filename.

If the specified modules are not found, the "Unknown module" error occurs. It is assumed that the
specified library_file exists.

-X: Extract modules from library into a single object file
Usage:

-X object_file library_file module1 [module2] …

 87

Extracts modules form the library and places them into one object file with the name object_file and the
extension .MCO (or other extension, if specified). Modules are not deleted from the library. If the
specified modules are not found in the library, the "Unknown module" error occurs. The specified
library_file must exist.

-m: Move modules from library to object files
Usage:

-m library_file module1 [module2] …

Extracts modules from the library to object files and deletes the modules from the library library_file.
Each specified module is placed in a separate object file with the .MCO extension and the file name
coincident with the module name. If the module name is longer than 8 characters then it is truncated to 8
characters and set as the object file name. If the specified modules are not found in the library, the
"Unknown module" error occurs. The specified library_file must exist.

-M: Move modules from library to single object file
Usage:

-M object_file library_file module1 [module2] …

Extracts modules from the library into one object file with the name object_file and deletes the modules
from the library library_file. The object file is given the .MCO extension if not specified otherwise. If the
specified modules are not found in the library, the "Unknown module" error occurs. The specified
library_file must exist.

-l: Display library header on the console
Usage:

-l library_file

Displays the header (catalogue) of the specified library on the console. If the header is too long and
cannot fit on one screen, you can redirect the standard output to a file using the ">" character or the MS-
DOS MORE utility. Example:

mclib -l mylib >mylib.txt

The Librarian directs the header listing of the MYLIB.MCL library to the standard output; DOS captures
this data and puts it in the MYLIB.TXT file.

-P: Assign ‘program’ attribute to modules
Usage:

-P library_file module1 [module2] …

Assigns the 'program' attribute to the specified modules in library library_file. If the specified modules
are not found in the library, the "Unknown module" error occurs. The specified library_file must exist.

-L: Assign ‘library’ attribute to modules
Usage:

-L library_file module1 [module2] …

Assigns the 'library' attribute to the specified modules in library library_file. If the specified modules are
not found in the library, the "Unknown module" error occurs. The specified library_file must exist.

 88

-O: Assign ‘low-priority library’ attribute to modules
Usage:

-O library_file module1 [module2] …

Assigns the 'low-priority library' attribute to the specified modules in library library_file. If the specified
modules are not found in the library, the "Unknown module" error occurs. The specified library_file must
exist.

-h or -?: Display the list of options on the console
Displays a brief description of options on the console. The same occurs if the MCLIB is started without
parameters.

 89

Appendix F. MCDUMP Command Line Interface

-e: List external names and module names
Displays the records for external names used in the modules of an object/library file. The -e option is not
valid for using with the MCE-files.

-m: List module names
Displays only the records describing modules in an object or library file. The -m option is not valid for
the MCE-files.

-p: List public names and module names
Displays the records for public and module names defined in the modules of an object/library file. The -p
option is not valid for the MCE-files.

-s: List segment names and module names
Displays the records for segments declared in the modules of an object/library file. The -s option is not
valid for the MCE-files.

-H: List contents of library header
Display a library header. The -H option is ignored for files in the MCO and MCE formats.

-r: Do not replace numbers with symbols
Preceding records are referenced without symbolic information (i.e. only indexes are used).

-h or -?: Display the list of options on the console
Displays a brief description of options on the console. The same occurs if the MCDUMP is started
without any parameters.

 90

Appendix G. Diagnostics

MCA-430 Diagnostic Messages

Warning A2: <user-defined warning message>
This is a warning message defined by the user. It is displayed with the .WARNING directive.

Warning A53: Operand type mismatch
The 'operand type' attribute of the operand is not the same as the op-type expected for the instruction.
This warning can be caused by an error in the program; for example, a missing "#" while the immediate
addressing mode was intended. This warning can be suppressed by using the -a option. A better approach
is to use the operand type reassignment operators and explicitly specify the op-type of expression, since
if the operand type checking is disabled completely, there is a risk of overlooking some errors. See Setting
Operand Type of Expression, Chapter 2. Example:

.RSEG MyData,data
 MyByte .dsb ;MyByte obtains BYTE operand type
 MyArr .ds 5
.RSEG _MyCode,code
mov.b MyByte,MyArr ;op-type mismatch for MyArr
.BYTE MyArr ;op-type of MyArr becomes BYTE
mov.b MyByte, MyArr ;ok

Warning A72: Too many warnings
Number of warnings is more than specified by the user in the -W option. No warnings will be displayed
further.

Warning A84: Operand allocation required
An instruction operand should be an address of the memory location, but the operand has no allocation
attribute (i.e. it is just a number). Typically, this warning indicates a logical error in the program. It can
also occur if the program is written in obsolete programming style or if the source text has been obtained
as a result of disassembling. This warning can be disabled with the -a option. Example:

.RSEG MyCode,code
JMP 0FC00h ;warning
.ASEG ACODE,code ;workaround for this problem
.org 0FC00h
L0FC00H:
.RSEG MyCode
JMP L0FC00H ;ok
.END

Error A1: <user-defined error message>
This is an error message defined by user. It is displayed by the .ERROR directive.

Error A3: '(' required
An opening bracket is possibly missing in one of the Assembler directives.

Error A4: ')' required
A closing bracket is possibly missing in one of the Assembler directives.

Error A5: '+', '-' or '.' required
The listing control command was not followed by the "+", "–", or "." symbol.

 91

Error A6: ',' required
A comma is required here but is missing.

Error A8: .ENDF address is less than address of function
As a result of some "tricky" sequence of instructions (probably, using the .ORG directives), the
Assembler program counter (PC) value at the .ENDF directive is less then PC value at the corresponding
.FUNC directive. Example:

.ASEG ACODE,code

.ORG 0FC10h

.FUNC Foo
 nop
.ORG 0FC00h
 ret
.ENDF
.END

Error A9: ASCII constant too long
A character string in an expression is too long. Only a string of up to 4 characters can be used as an
operand in arithmetic expressions (i.e. as a number).

Error A10: Absolute expression required
Absolute expression was expected here, but it is either not specified or specified incorrectly.

Error A11: Allocation required
Allocation attribute was expected here, but it is either no specified or specified incorrectly.

Error A12: Bad allocation
Allocation attribute was expected here, but it was specified incorrectly. Example:

.extrnb(xdata) Var ;error: no such allocation 'xdata'

Error A13: Bad number of arguments
Wrong number of arguments is specified in assembler instruction or directive. Such an error is often
caused by another error ("induced" error).

Error A14: Division by zero
When evaluating an arithmetic expression, the Assembler has encountered the "division by zero"
operation.

Error A15: Duplicate label <lname>
Name lname was declared more than once in the current scope. The same name may not be declared in a
module more than once. The only exception is local labels in the functions which should be unique
between a .FUNC/ .ENDF directive pair, and not within a module. Example:

.RSEG MyData,data
X .dsb
.RSEG MyCode,code
X: ; error here
 dec R7
 jnz X

Error A16: Duplicate macro <mname>
The Assembler has encountered more than one macro definition with mname. There can not be two
macros with the same name in a module.

 92

Error A17: Expression <> current relocation
 .ORG directive contains the expression, 'relocatability' attribute of which does not match the current
segment 'relocatability'. Expression should be absolute in the absolute segment and relocatable in the
relocatable or overlay segment. Example:

.extrnn Start
Init .equ 5
.ASEG AbsSeg, data
.ORG Init ;ok, program counter=5
.ORG $+5 ;ok, program counter=10
;...
.ORG Start ;error, external expression
.RSEG RelSeg, data
;...
.ORG $+10 ;ok
;...
.ORG 5 ;error, absolute expression

Error A18: Expression not absolute
Only absolute expression can be used here. Example:

.EXTRNN SerNo

.EXTRNB(data) Size

.RSEG MyCode, code

.if SerNo='1234' ;error: external numeric
 ;constant SerNo is not absolute
 mov.b #128, Size
.else
 mov.b #255, Size
.ENDIF
.END

Error A19: Expression required
An expression is expected here but is missing.

Error A20: Extra characters in line
Extra characters are found at the end of the line. Such an error is often caused by a missing comma or
another syntax error ("induced" error).

Error A21: Identifier required
Identifier is missing in an assembler directive. Commonly, this error occurs in one of the following
directives: .PUBLIC, .EXTRNx, .BYTE, .WORD, .DWORD, .TYPE. Such an error can be also
caused by an extra comma (right after a closing bracket) in the .EXTRNx directive.

Error A22: Illegal instruction
An illegal instruction or assembler directive is specified. This error is often caused by a missing colon
after a label name or by a missing dot before an assembler directive. This error can also be caused by
another error ("induced" error).

Error A23: Illegal use of local variable <_name>
Illegal use of local (in function) identifier _name.

Error A24: Illegal use of macro name <mname>
Illegal use of the mname macro. Macro name can be used for macro call (expansion) only. For example,
a macro can not be an operand in instruction or Assembler directive.

 93

Error A25: Inappropriate use of variable symbol
Incorrect use of a variable identifier. Identifier defined with the .SET directive or the equation symbol
"=" may be redefined by subsequent .SET/= statements anywhere in the source text. This imposes
restrictions on the use of such identifier. For example, it may not be declared as public with the .PUBLIC
directive. Use the .EQU directive to define identifiers that can be declared as public. Such identifiers may
not be redefined. Example:

 Var1 = 10
.PUBLIC Var1 ;error
 Var2 .EQU 10
.PUBLIC Var2 ;correct

Error A26: Instruction operand required
One or more operands are expected in the instruction but are missing.

Error A28: Invalid operand combination
Invalid operand combination is specified in instruction.

Error A29: Invalid syntax
Invalid syntax. Example:

.rseg RCODE,code
zzz .MACRO abc
4&abc:
.ENDMAC
zzz def
.END

Error A30: Directive cannot be used with this allocation
The directive can not be used with the specified allocation attribute.

Error A31: Label <ident> already typified
The identifier ident is used as operand in a directive that assigns the operand type and the operand type of
ident is not UNTYPED. If you need to use a typed name (or an expression) as operand in instruction then
use the .BYTE, .WORD, .DWORD operators to specify the necessary operand type, rather than using
the operand type assignment directives. Example:

Arr1 .ds 10 ;untyped array
.byte Arr1 ;ok: Arr1 becomes array of 10 bytes

Arr2 .dsb 10 ;array of 5 BYTE’s
.word Arr2 ;error: Arr2 already has op-type WORD

Arr3 .labelw
.ds 10 ;array of 5 words
Arr3 .dsd ;error: Arr3 already has op-type WORD
Var1 .db2 ;Var1 is 2 byte UNTYPED name
.dword Var1 ;Var1 obtains op-type DWORD

Error A32: Label required for this directive
Current Assembler directive must be labeled, i.e. such directive always defines an identifier. Example:

.DEFINE 10 ;error: identifier requied

.RSEG MyData, data

.DSB 10 ;error: identifier requied

.DS 10 ;ok

.RSEG MyCode, code

 94

.DCB 10 ;ok

.END

Error A34: Misplaced .ELSE
The .ELSE directive can be placed inside a conditional block only, i.e. between the .IF and .ENDIF
directives.

Error A35: Misplaced .ENDIF
The .ENDIF directive can be placed at the end of a conditional block only, i.e. after .IF or .ELSE.

Error A36: Misplaced .ENDMAC
Inappropriate use of the .ENDMAC directive. The directive .ENDMAC can be placed only at the end of
a macro definition or repeat block.

Error A37: Misplaced .EXITM
Inappropriate use of the .EXITM directive. Directive .EXITM can be placed inside a macro definition or
repeat block only.

Error A38: Misplaced operator .PARM
Inappropriate use of the .PARM operator. The .PARM operator can be used inside macro definitions
only.

Error A39: Module name required
A module name is not specified (or specified incorrectly) in the .PMODULE, .LMODULE, or the
.LMODULE2 directive.

Error A40: Nested macro definitions
The Assembler has encountered a nested macro definition. In this version of the Assembler, macro
definitions cannot be nested in other macro definitions or repeating blocks.

Error A41: No .END directive
There is no .END directive at the end of the source file. Source file is probably damaged.

Error A43: No .ENDIF directive
A conditional block .IF does not have the .ENDIF directive at the end.

Error A44: No .ENDMAC directive
A macro definition or repeat block does not have the .ENDMAC directive at the end.

Error A45: No .FUNC directive
The Assembler has encountered an .ENDF directive without a preceding .FUNC directive.

Error A46: Relocatability conflict
This occurs when operands in arithmetic expression have incompatible 'relocatability' attributes.

Error A47: No module prologue
Extra .END or .ENDMOD directive was encountered.

Error A48: No segment declaration
The error usually occurs in the beginning of a source file. The Assembler has encountered code, label or
data definition outside of any segment. Code and data must be only placed in the declared segments.

 95

Insert the .RSEG, .OSEG, or .ASEG directive before the line that has caused the error, in order to
declare corresponding segment.

Error A51: Operand required
Operand is required in the arithmetic expression but is missing.

Error A52: Operand syntax
Incorrect operand syntax in an arithmetic expression.

Error A55: Operator not allowed here
Illegal use of the part extraction operator .HWRD, .LWRD, .HIGH, .LOW, .BYTE3, or .BYTE4.

Error A56: Out of range
Some value is outside of the allowed range. Whether the value of relocatable expression falls inside the
allowed range is checked at link time only. If it does not, the Linker generates the same "Out of range"
error message.

Error A57: Segment mismatch for function <fname>
The .ENDF directive is not in the same segment as the previous directive .FUNC fname which declares
the fname function.

Error A58: Segment name required
Illegal segment name or no name is specified in the .RSEG, .OSEG, or .ASEG directive. For example,
names of allocation attributes and other reserved words may not be used as segment names.

Error A59: Something after .END directive
There is some text following the .END directive. The .END directive indicates the end of file and the end
of the last module in the file, so no text is allowed beyond it.

Error A61: Module should be closed with .ENDMOD
Before opening the next module with the .PMODULE, .LMODULE, or .LMODULE2 directive, the
previous module should be closed with the .ENDMOD directive.

Error A62: Segment <sname> must be declared before using
You can not use a segment that has not been previously declared in the module. Specify allocation
attribute for the segment sname in the corresponding .RSEG, .OSEG, or .ASEG directive.

Error A63: String required
A string is expected here but is missing. This error usually occurs in such directives as .WARNING,
.ERROR, .MESSAGE, .LNKCMD. Note that character strings in MCA-430 should be enclosed in
single quotes (').

Error A64: String too long
Character string length exceeds 255 characters.

Error A65: Superfluous label <lname>
An extra label. Directives .BYTE, .PUBLIC, .EXTRN, .TYPE, .FUNC can not be labeled.

 96

Error A68: Operand cannot be the result of part extraction operator
Operand cannot be a result of part extraction operator.

Error A69: Too many macro arguments
Too many macro arguments are specified in the .MACRO or .IRP directive. Not more than 33
arguments can be used in a macro definition (declared with .MACRO) and not more than 32 arguments
can be used in a repeat block with parameter scanning (.IRP).

Error A73: Type conflict
An attempt to change the 'type' atribute of an identifier. If the type attribute (different from 0 or nothing)
has already been assigned to an identifier earlier in the module, the attribute may not be changed with the
.TYPE directive. Example:

aa .EQU 16
.TYPE aa(.NOCHECK)
. TYPE aa(.UCHAR) ;error
.RSEG MyData,data
dd .DSI ;INT type is assigned to dd
…
. TYPE dd(.UINT) ;error, type attribute has been already assigned
.END

Error A74: Unclosed function <fname>
Function fname is not ended with .ENDF directive.

Error A75: Expression not relocatable
Only relocatable expression can be the operand of the .OFFSET operator.

Error A78: Unknown label <id>
The Assembler has encountered an unknown name id (either label or identifier).

Error A79: Instruction is illegal for this CPU type
Machine instruction is not supported by selected processor type or is inaccessible in selected memory
model.

Error A81: Segment <seg_name> type conflict: <type1>/<type2>
Different directives (.RSEG, .OSEG, or .ASEG) are used for declaration of the seg_name segment and
for switching to that segment. For example, if the segment seg_name was declared with the .RSEG
directive, you can not switch to it with .ASEG. Example:

.RSEG RCODE,code ; RCODE segment declaration
.RSEG RCODE ; switch to RCODE segment
…
.ASEG RCODE ; switch to RCODE - ERROR:
 ;"Segment RCODE type conflict: relocatable/absolute"
…

Error A82: Incompatible segment allocation
The error usually occurs when instruction mnemonics are used in segments with data allocaion.
Instructions can be used in code segments only.

Error A83: Illegal forward reference
Illegal forward reference. For example, the .ALLOCATION and .OPTYPE operators do not allow using
forward references in their operand specification.

 97

Error A86: Too many nested macro calls
Too many nested macro calls. Generally, such an error occurs in case of macro calls cycling.

Error A87: Incorrect segment allocation specified
When switching to a previously declared segment, an incorrect allocation attribute was specified. If the
segment is already declared, you do not need to specify the allocation attribute. However, if the allocation
is still specified, it should be the same as in the segment declaration. Delete the allocation attribute and
preceding comma from the segment switching directive to avoid this error. Example:

.RSEG RCODE,code ;declare RCODE segment - OK
…
.RSEG RCODE ;switch to RCODE segment- OK
…
.RSEG RCODE,code ;switch to RCODE segment- OK
…
.RSEG RCODE,data ;ERROR
…
.END

Error A88: Segment must have allocation <alloc>
Incorrect allocation is specified for a segment declared using the extended format.See also: Segment
Declaration and Selection in Assembler Directives, Chapter 2.

Example:

.RSEG ExtSeg,code(CodeSeg) ;error: ExtSeg should have allocation 'data'

.RSEG ExtSeg,data(CodeSeg) ;correct

.RSEG MySeg, data ;declaraing a 'data' segment
.RSEG ExtSeg, data (MySeg) ;error: MySeg must be a 'code' segment

Error A89: Segment must be relocatable/overlay
The Assembler has detected an attempt to declare an absolute segment in extended format. Only
relocatable and overlay data segment can be declared using the extended format of segment declaration.
See also: Segment Declaration and Selection in Assembler Directives, Chapter 2.

Error A92: Misplaced .ENDSEG
The Assembler has encountered the .ENDSEG directive without a matching .RSEG, .OSEG, and
.ASEG directive. The .RSEG, .OSEG, and .ASEG directives not only switch the Assembler to the
specified segment. They save in memory, structured as stack, the name of the previous segment which has
been used before switching. The .ENDSEG directive, in turn, pops the last stored segment name from the
stack and switches the Assembler to that segment. This error occurs when the Assembler encounters
.ENDSEG directive and the segment stack is empty. For example, if the Assembler has not yet
encountered any .RSEG, .OSEG, or .ASEG directives. Example:

.ENDSEG ;error

.RSEG MyCode,code

.RSEG MyData,data

.ENDSEG ;switches to MyCode segment

.ENDSEG ;switches to the 'no segment' state

.ENDSEG ;error

.END

Fatal A0: No such file or directory (<filename>)
The Assembler can not find the include file filename. The assembling is terminated.

 98

Fatal A49: No source file name
The source file name was not specified to the Assembler. Assembling is immediately terminated.

Fatal A60: Source line too long
Source line is too long and the Assembler can not process the source file. Maximum line length, 1000
characters, should be more than sufficient. Possibly, there is something wrong with the file.

Fatal A66: Too many errors
Assembler has detected more errors than the maximum number of errors specified by the user (in the -E
option).

Fatal A67: Too many externals
Too many external names were declared. Not more than 1023 external names can be declared in the
module.

Fatal A70: Too many segments
Too many segments were declared. Not more than 1023 segments can be declared in the module.

Fatal A71: Too many source files
Too many files need to be included in the source file (with .INCLUDE directive). Not more than 1023
include files can be used in the source file.

Fatal A77: Unknown command line option <bad_option>
Unknown option bad_option is specified to the Assembler. Assembling will be immediately terminated.

Fatal A80: Command line too long
Specified command line is too long. Assembling will be immediately terminated. Use the response files
to avoid this problem.

Fatal A90: Invalid argument in option <opt>
Wrong argument is specified in the opt option. The assembling is terminated. This error can occur with
the -E, -W, and -P options.

Fatal A91: Include file cannot contain more than one module
If the include file contains .PMODULE, .LMODULE, or .LMODULE2 directive then it must consist of
a single module, i.e. the file must begin with a module declaring directive and end with the module
ending directive .ENDMOD. The assembling is terminated.

 99

MCLINK Diagnostic Messages

Warning L2: Address area <addr_space> file extension already defined
File extension has been already defined with the Linker -H option for the address space addr_space.
Only one -H option may be specified for an address space.

Warning L15: Duplicate label <name> in module <mod>
Public name is defined in more than one module. Public names must be unique in the program.

Warning L30: Segment <seg> auto-placed in the <addr_space>
The address space in which the segment seg is to be placed was not specified to the Linker. The Linker
has allocated it in the default address space addr_space.

Warning L31: Operand type conflict <var>: <optype1>!=<optype2>
The Linker checks the operand type attributes of public and external names. For example, if in one
module the variable var is declared as public and defined with the .DSB directive (with BYTE operand
type), but another module refers to var by the .EXTRNW directive, in the latter module the variable’s
operand type will be WORD and the Linker will generate the warning message.

Warning L32: Overlapping range 0xxxxh-0yyyyh in segment <seg>
The specified range of the relocatable segment seg is occupied by more than one fragment of code or
initialized with data more than one time.

Warning L45: Type conflict <var>: <type1>!=<type2>
The Linker checks the type attributes of public and external names. For example, if in one module the
variable var is of the .CHAR type and declared with the .PUBLIC directive, and another module refers
to var by the .EXTRNB directive, in the latter module the variable is of the .UCHAR type and the
Linker generates the warning message.

Warning L52: Unknown segment <seg>
The segment seg specified in one of the -S Linker option cannot be found in modules for linking. The
segment is ignored.

Warning L58: Different address areas specified in options -S for segment <seg>, address area
<addr_space> is used
The seg segment is specified in two or more -S Linker option with different address spaces. The segment
is placed in the address space addr_space (specified in the last of such options).

Error L5: Allocation conflict for segment <seg> and address area <addr_space>
The segment seg is listed in the -S Linker option option for the address space addr_space, but allocations
of addr_space and seg are different. Check -S and -A options for addr_space. Assume the following
source text is assembled.

Error L11: Bad version of MCL format in <filename>
The version of the object library file format is not compatible with the current Linker version.

Error L12: Bad version of MCO format in <filename>
The version of the relocatable object file format is not compatible with the current Linker version.

 100

Error L46: Undefined extern name <name> in module <mod>
The Linker has determined that the name is declared as external and used in the module mod, but is not
declared as public in any other module available for linking. If an external name is used in a module, it
should be defined and declared as public (using the .PUBLIC directive) in another module. This error can
be possibly caused by assembling files containing program/library modules, with different case sensitivity
setting.

Note, if you need to include an object or a library module assembled in the case insensitive mode
(containing all names in upper case) in a mixed Assembler/C project, it is convenient to use the #define
directive to redefine such names in C source text. For example, assume you have defined the function
MyFunc in an assembler module. If the module was assembled in the case insensitive mode, put the
following line in the C header file and include this file in all C modules where MyFunc is called:

#define MyFunc MYFUNC

Fatal L1: Address area <addr_space> exceeds predefined limits
Address range specified for the address space addr_space is beyond the allowed limits: see Address
Space Allocation Attributes in Chapter 1. Basic Conceptions for information on the address space upper
and lower boundaries.

Fatal L3: Alignment error
The address assigned to segment or variable is not compatible with the required alignment. Such an error
may occur, for instance, when an external variable located at an odd address is accessed by a word
instruction, in the current module. If the Linker generates this error, assemble/compile the corresponding
source file with the -d command line option (to include debugging information in object file). The Linker
can then refer to line number in the source file where the out-of-range error occurs. See also the .ALIGN
directive under Segment Alignment in Assembler Directives, Chapter 2.

Fatal L4: Allocation conflict for <name>: <alloc1>!=<alloc2>
The Linker generates this error when different allocations are specified for a name, for example:

§ Range of a predefined address space is changed, but wrong allocation is specified in the

corresponding -A Linker option.
§ In different modules, segments with the same name are declared with different allocation.
§ External name is declared with allocation which is not the same as allocation of corresponding

public name.

Fatal L6: Bad number <num>
No or invalid number num is specified in one of the Linker options.

Fatal L7: Bad object file <filename>
The input file filename is not in the correct object format or the file is corrupt.

Fatal L8: Bad option format <string>
String specified in one of the Linker options has wrong syntax.

Fatal L9: Bad range <string>
The Linker expected an address range in one of the Linker options. The range is not specified or is
misspelled.

Fatal L10: Code size exceeds demo version limit
This error can only be encountered with the demo version of the product.

 101

Fatal L20: Illegal type number 0xxh
The type number specified for the name is not valid. Use MCA-430 predefined constants that designate
name types.

Fatal L23: Invalid object file <filename>
The input object file filename does not have a valid object code file format.

Fatal L24: Linker stack empty
The most possible cause for this error is a failure in the Assembler or compiler.

Fatal L25: Linker stack full
The most possible cause for this error is a failure in the Assembler or compiler.

Fatal L27: No free room in address space <addr_space> for segment <seg>
The Linker is not able to link the segment seg within the valid range for the address space addr_space.
For example, the available space has been used for placing other relocatable segments, so the relocatable
segment can not be placed; or, addresses of the absolute segment are out of range for the corresponding
address space. To solve this problem in mixed Assembler/C projects use less static variables, which
occupy space in memory during the entire program execution time. Instead, use function parameters to
pass variables from one function to another.

Fatal L28: No modules to linking
There are no modules in the list of modules to be processed, after reading all input files. This is probably
because there are only library modules in the input files.

Fatal L29: No object file specified
No object files are specified in the Linker command line.

Fatal L36: Segment <seg> type conflict: <rel_1>!=<rel_2>
In different modules the segment seg is declared with different relocatability attributes. See also Segment
Declaration and Selection in Assembler Directives, Chapter 2.

Fatal L37: Segment <seg> is not relocatable
The segment seg specified in the -Z Linker option can not be absolute.

Fatal L38: Too many address areas
The Linker has encountered too many address spaces. Maximum number of address spaces is 255.

Fatal L39: Too many extern names
The Linker has encountered too many external names. Maximum number of external names in a program
is 4096.

Fatal L40: Too many names
The Linker has encountered too many public names. Maximum number of public names in a program is
4096.

Fatal L42: Too many scopes
The Linker has encountered too many scopes.

Fatal L43: Too many segments
The Linker has encounters too many segments. Maximum number of segments per program is 1024.

 102

Fatal L44: Too many types
The Linker has encountered too many types.

Fatal L48: Unknown address area <addr_space>
The address space addr_space specified in one of the MCLINK options is not valid.

Fatal L49: Unknown allocation <alloc>
The allocation alloc specified in one of the MCLINK options is not valid.

Fatal L50: Unknown option <opt>
Opt is not a valid MCLINK option.

Fatal L51: Unknown output format
The output format specified in the -F Linker option is not valid.

Fatal L53: Banking disabled for allocation <alloc>

Fatal L54: Unresolved externals encountered
One or more external names have no corresponding public names in any of the input files. This error is
preceded by the error(s) specifying which external name is unresolved.

Fatal L55: Value 0xxxxh out of range
If the Linker generates this error, assemble/compile the corresponding source file with the -d command
line option (to include debugging information into that object file). The Linker can then refer to line
number in the source file where the out-of-range error occurs.

Fatal L56: Too long command line. Please use @filename option
The Linker command line is too long. Use the response file for storing most frequently used options and
linked file names (such as libraries). Then, you can specify one or more response files in the command
line using the "@" Linker option along with other options and linked file names.

Fatal L57: Invalid pagesize <num>
The page size specified in the Linker -S command line option is not valid. The page size must be a
numeric value multiple of the power of 2.

Fatal L60: Segment <seg> too long to be placed on <num>-byte page
Size of the seg segment is greater than the page size where the segment is to be placed.

 103

MCLIB Diagnostic Messages

Error B3: Bad object file <object_file>
The Librarian has detected an attempt to add modules to the library from the object file object_file that
has invalid format. Object file may be corrupt.

Error B4: Duplicate module <module_name>
The Librarian has detected that the name module_name of the module being added to the library is
already in use by another module existing in the library. Use either the -d option to delete the module
from the library prior to adding another one, or use the -r option which will replace the module with
duplicate name.

Error B5: Duplicate public <name>

Error B6: Invalid object file <filename>
The file filename specified to the Librarian as a source of object module(s) is not an object file.

Error B7: No library file specified
Library file is not specified or is accidentally omitted in one of the options.

Error B8: Unknown module <module_name>
The Librarian was unable to find the specified module module_name in the library file.

Error B9: Unknown option <option>
The command line option option specified to the Librarian is not supported.

Error B10: Too long command line. Please use \"@filename\" option
The command line is too long. Create a response file and move some parameters into it.

 104

MCDUMP Diagnostic Messages

Fatal D1: Bad version of MCE format in <filename>
The format version of the MCE-file specified is not compatible with the version of MCDUMP used or the
file is corrupt.

Fatal D2: Bad version of MCL format in <filename>
The format version of the MCL-file specified is not compatible with the version of MCDUMP used or the
file is corrupt.

Fatal D3: Bad version of MCO format in <filename>
The format version of the MCO-file specified is not compatible with the version of MCDUMP used or
the file is corrupt.

Fatal D4: Bad object file <filename>
MCDUMP has detected that the object file or library file format is not valid. The specified file is not an
object, library, or executable file, or the file is corrupt.

Fatal D5: Incompatible options
The option specified in the MCDUMP command line is not compatible with the format of the specified
file. Note that some of the options are not compatible with the MCE-files.

Fatal D6: No object file specified
No file was specified as the input file for MCDUMP.

Fatal D7: Too many extern names
MCDUMP has encountered too many external names. The maximum number of external names is 4096.

Fatal D8: Too many names
MCDUMP has encountered too many public names. The maximum number of public names is 4096.

Fatal D9: Too many source files
MCDUMP has encountered too many references to source files. The maximum number of references to
source files is 1023.

Fatal D10: Too many types
MCDUMP has encountered too many records describing types.

Fatal D11: Unknown option <option>
The option specified in the MCDUMP command line is not supported.

Fatal D12: Too long command line. Please use \"@filename\" option
The command line is too long. Create a response file and move some parameters into this file.

