
PICD-430™
The Phyton In-circuit Debugger for the

Texas Instruments MSP430F™ Microcontrollers

Phyton, Inc.

1

Phyton In-Circuit Debugger - PICD-430

PICD-430™

The Phyton In-circuit Debugger for the
Texas Instruments MSP430F™ Microcontrollers

Introduction

PICD-430™ is a development tool that supports program debugging and in-system
programming for the MSP430F™ family of embedded microcontrollers from Texas
Instruments.

PICD-430 can be hosted by any personal computer (PC) that has a USB port and works
under control of Windows® 9x/ME/2000/XP.

To understand this manual you should read the Appendix A that describes all the basic
terms and definitions used in this document.

Deliverables

The PICD-430 package includes the following items (some of them are optional):

1) PICD-430 unit
2) USB cable to connect a PICD-430 unit to the PC’s USB port
3) Ribbon cable to connect a JTAG port of a PICD-430 unit to a target
4) CD ROM with the Project-430 software
5) A target board (option)
6) A wall-plugged regulated 5V power adapter (option)

The PICD-430 debugger unit is enclosed in a small plastic case. It has two
microcontrollers on board. One of these supports communication via the USB port and
the second converts high-level commands sent from the PC to low-level commands and
data that are sent and received to and from a target microcontroller via the JTAG
interface. Besides these microcontrollers, the debugger has an on-board voltage regulator
that adjusts and transfers power to the target. This eliminates the need for an external
power supply in most cases.

PICD-430 software is supplied on a CDROM and includes the following items:

• Project-430 integrated development environment (IDE)
• MCA-430 macro assembler from MicroCOSM-ST
• PDS-430 command set simulator
• PICD-430 debugger

2

Phyton In-Circuit Debugger - PICD-430

• A set of application programs and user guides in electronic form

Project-430 IDE includes an editor, project manager, linker, librarian, object-hex
converter and other utilities that help to handle the whole development process in one
environment.

A target board (or boards), which can be optionally supplied with the PICD-430, has an
MSP430 device that the PICD-430 uses as a target microcontroller. In addition, there’s a
JTAG plug for hooking up this board to the PICD-430 unit. The debugger emulates the
behavior of the target microcontroller as it runs a debugging program while it is under
control of the PICD-430. Some types of target boards can include LCD panels, LEDs,
switches, buttons and other peripheral devices.

Main Features

• Supports MSP430F11x, MSP430F11x1A, MSP430F11x2, MSP430F12x,
MSP430F12x2, MSP430F13x, MSP430F14x, MSP430F41x, MSP430F43x,
MSP430F44x devices (new devices will be supported in future)

• The Project-430 IDE, MCA-430 macro assembler and PDS-430 simulator are

supplied without charge

• PICD-430 integrates MCC-430 C compiler from MicroCOSM-ST or EW-430 C
compiler from the IAR Systems, and provides project management and source-
level debugging for applications written with these compilers (other compilers
will be supported in future)

• Provides in-system flash programming, real-time run and single step program

execution, breakpoints, and real-time tracing (tracing is available for selected
derivatives only)

• High-level steps for C programs and low-level steps for assembly code

• Up to 8 unconditional breakpoints at an address, or a range of addresses, in code

memory

• Up to 8 complex breakpoints/triggers on access to “bus events” and “register
writes” which can be logically ORed, ANDed or sequentially programmed to
break emulation or to trigger trace recording

• Enables examination and modification of internal resources of the target MSP430

MCU when execution is stopped

• For some MSP430 derivatives, the internal clock can be enabled after the break,
so that the target MCU will continue to generate clocks for an external LCD or
other peripherals

3

Phyton In-Circuit Debugger - PICD-430

• The trace buffer records 40-bit frames displaying real-time signals on the internal

MSP430 bus: there are 16 lines of address, 16 lines of data and 8 controls

• The depth of the trace buffer is defined by the particular type of MSP430 device
(8 frames min)

• Ability to search filter and search trace frames

• The target MCU status can be monitored on-the-fly without stopping real-time

execution

• The embedded programmable voltage regulator allows setting any voltage on the
target microcontroller, in a range from 1.8V to 3.6V with 0.1V resolution.

• Works under control of Windows 9x/ME/2000/XP

• Communicates to a PC via a USB 1.1 interface

Software Installation

The installation procedure is standard for all users of PCs. Insert the CDROM supplied
with the PICD-430 into the CD drive of your PC. After a few seconds you will get a
start-up dialog on the screen. Click on the “Project-430” button and follow the
instructions to install the software. If you download a software update from our website
then invoke the setup.exe file to begin installation or software update. At the end of the
installation the program will open a Project-430 folder with the tools and documentation
icons (shortcuts).

Hardware Installation

The PICD-430 unit, its connectors and LEDs are shown below.

PICD-430

LEDs

JTAG connector

USB connector

Power connector

Pin# 1

4

Phyton In-Circuit Debugger - PICD-430

Connect the PICD-430 JTAG 14-wire ribbon cable to a JTAG male plug on the target;
plug the opposite end of the cable into the JTAG socket on the face panel of the PICD-
430 unit (see Appendix B).

If it’s necessary, connect the PICD-430 unit to power via a 5V wall-plug regulated power
adapter (read further about the conditions when you need external power to work with the
PICD-430). Make sure that this adapter is regulated and that the center contact on its
cable is positive! Connect a USB input of the PICD-430 unit to a USB port of your PC
by means of the attached cable.

Choosing an Appropriate Power Scheme for the PICD-430

The PICD-430 unit itself consumes less than 40 mA at 5V, so it gets enough power from
the USB port of a PC. The target can be powered either from an external (user’s) power
adapter or, if necessary, it can get limited power from the PICD-430 unit. The PICD-430
has an input for an external power adapter (5V/1A) that enables power transfer to the
target via a built-in programmable regulator and the JTAG port.

If the target consumes less than 50mA you needn’t be concerned about supplying it from
a separate power source – the PICD-430 unit will transfer enough power from a PC’s
USB port to the target via the built-in programmable regulator and the JTAG port.

If the target consumes between 50 mA and 400mA you can supply the PICD-430 unit
from a 5V regulated power adapter and the target will get power passing through the
PICD-430 unit.

If the target consumes more than 400mA you should supply it from an external power
source and make sure that Vcc on the target MCU is in the range specified by Texas
Instruments for the MSP430. If the target, and particularly the target MCU, gets power
from an external (user’s) power adapter, then you do not need to supply the PICD-430
unit from a 5V power adapter.

Take into account that a single USB port cannot generate more than 500 mA of output
current. Therefore, if you connect the PICD-430 unit to a hub that has other connected
USB devices, you may limit the power received by the PICD-430 unit and the connected
target.

When you connect the PICD-430 unit to a USB port the red LED on the PICD-430
should go on.

Starting the PICD-430

When you start the “Phyton Project-430” program you are prompted to start either the
PDS-430 debugger/simulator or the PICD-430 in-circuit hardware debugger. Here we
describe how to operate with the PICD-430. Note that both debuggers have very similar

5

Phyton In-Circuit Debugger - PICD-430

user interfaces and methods of control; therefore this manual will be helpful for operating
with the PDS-430 as well.

Invoke the PICD-430 in-circuit hardware debugger (you can also invoke the PICD.EXE
program from the Phyton folder). A green LED on the face panel should blink. This
indicates that the PICD-430 unit is communicating with the PC. Also, you will see a
communication dialog ("PICD-430 Communications") that will prompt you to specify the
type of interface. When working with the PICD-430, select USB as the "Communication
Type." "Printer Port" is an alternative choice that is intended to drive the "MSP430Fxxxx
Flash Emulation Tool" produced by Texas Instruments.

If you get an error message showing that the program could not establish a connection to
the PICD-430 unit, check whether you properly set the communication parameters. Also,
check the power scheme and connection of the cable to the USB slot on your PC. After
the PICD-430 successfully establishes communications to the PC, it brings to the screen
the Hardware Configuration dialog.

First, select the type of the target MCU. The PICD-430 automatically identifies the target
MSP430 subfamily or group that’s connected to the PICD-430 unit. However, you
should manually select the particular microcontrollers that’s installed on the target. For
example, MSP430 group = MSP430F44x, target MCU = MSP430F449.

Second, select one of the power schemes. Select “Emulation MCU Power Management”
and choose either the “Follow target board voltage” or “User-specified value” and type
any value between 1.8V to 3.6V. The embedded voltage regulator will precisely support
the entered value on the Vcc pin of the target MCU. If you select “Follow target board
voltage” this will eliminate any conflicts between voltages generated by the PICD-430
unit and the target MCU. This is safer but can be used only in case you supply the target
from a separate power source.

After all the settings are done, click OK to enter the PICD-430 program. It will open the
main window and will open a dialog that offers to load one of the demo examples.
Working with these examples will allow you to familiarize yourself with the product’s
features and with the GUI controls and menus. Or you can close the example dialog and
open a new project. If you would like to load some examples for evaluation later, you can
always invoke the list via the Main menu > User > Show example list.

Conf igur ing the P ICD-430

All PICD-430 settings are grouped under the “Configure” submenu of the Main menu.
Prime and most important settings are accessible via the Hardware Configuration dialog.
To open this dialog select the Main menu > Configure > Hardware Configuration. The
dialog box has three tabs: Target, Target MCU Power Management, and Options. It also
has two panes. Choose a parameter to set in the left pane and then type it in, or just pick
from the list in the right pane.

6

Phyton In-Circuit Debugger - PICD-430

Target

The PICD-430 automatically detects to which subfamily a target MCU belongs. Each
subfamily includes a number of the MSP430 derivatives shown in the Target Chip field.
The program prompts a full list of the target microcontrollers for each subfamily. Pick the
particular type that’s set on your target board.

Target MCU Power Management

The PICD-430 has an embedded voltage regulator that controls the Vcc applied to the
target microcontroller. You can set one of two alternative modes of power management
for the target microcontroller.

Fo l low Targe t Board Vo l tage

This mode is recommended when the target is supplied from an external power adapter.
In this mode an embedded programmable voltage regulator constantly monitors the real
level on the Vcc pin of the target microcontroller, and accurately adjusts levels on its
JTAG logic outputs. If you choose this mode you must supply the target from an external
power supply; otherwise the PICD-430 will not work. By setting this mode you avoid
conflicts between logical signals on the target and on the PICD-430 unit. This protects
both parts of the system from damage.

User Spec i f i ed , Va lue in Vo l ts

This is a default mode of the power management. In this mode you can enter any voltage
value in a range from 1.80 to 3.60. An embedded regulator will set, monitor and stabilize
this value on a Vcc pin of the target microcontroller with an accuracy of +/- 0.1Volt.
Actual voltage levels on the target microcontroller and the target board are always shown
under the programmed value.

It is possible to use this mode when you supply your prototype from an external power
adapter. Then, it’s possible that the voltage generated by the PICD-430 unit will differ
from the voltage applied to the target microcontroller. To prevent any damage of the
target the PICD-430 program blocks any attempts to mistakenly set voltage that differs
from the level measured on the Vcc pin of the target MCU by more than -/+ 400 mV and
issues the warning shown here.

7

Phyton In-Circuit Debugger - PICD-430

You can click on the Hardware Configuration button to correct the voltage settings. By
clicking Yes you accept all the consequences of your settings.

Options

This dialog allows setting some options that are specific for each particular MSP430
subfamily.

Enab le Hardware Rese t

If this option is checked it enables direct passing of the hardware reset signal from the
JTAG connector to the input RESET of the target microcontroller. If the option is
unchecked then the PICD-430 will reset the target microcontroller via the JTAG interface
by means of the Enhanced Emulation Module (EEM).

Reset De lay , ms

Here you can set a programmable delay between the time when the PICD-430 generates a
hardware reset and the time that this signal appears at the RESET input of the target
microcontroller.

Genera l C l ock Cont ro l in Break Mode

Here you can block clocking of some target microcontroller peripherals (timers, ADC,
etc.) in the break mode, when the target microcontroller is not running in real-time mode.

8

Phyton In-Circuit Debugger - PICD-430

Emula t ion Mode

This option, embedded into the MSP430F449 derivative in a 100-pin QFP package only,
enables you to emulate LCD control for the 100-pin MSP430F43x and 80-pin versions of
the MSP430F44x and MSP430F43x derivatives. See the pin mapping in Appendix E.

Development wi th the P ICD-430 IDE

After you have set up the PICD-430 and clicked OK, the program opens the main
window with a few windows inside – usually the Source, Disassembler and Project
windows. By default the program saves all configuration parameters (including windows
layout) and restores them next time you start the PICD-430. The program always opens
an example list menu that offers to load some project examples for evaluation and
familiarization with the PICD-430 functions. Keep in mind that all the changes in these
examples will be saved automatically when you quit the program unless you switch off
the Autosave session on exit function before closing the program. For this, go to Main
menu > Files and toggle the function line.

The top line of the main window (just under the window title) shows submenus: File,
Edit, View, Run, Breakpoints, Configure, Project, Commands, Scripts, Windows and
Help. The main toolbar below includes buttons that trigger some frequently used
commands. Every window has its own local menu, which can be invoked by setting the
mouse cursor over a particular window and then clicking the right mouse button. Local
menus also display frequently used commands and settings associated with the window.

There are two modes of use for the debugger:

• Project-level support
• Source-level debugging

Project-level Support

Project-level support is the most convenient way of developing programs because it
allows you to use the complete set of development tools as an integrated development
environment (IDE). These include entering raw source code, editing, compiling, linking,
debugging, and finally writing a completely debugged body of code into the target
MCU’s flash memory.

Here we will mostly describe how to use the PICD-430 for the project-level kind of
development. It enables you to set up a compiler, linker and other tools right from the
Project-430 IDE. Then a project manager will automatically invoke the necessary tools,
issue error messages, highlight lines of invalid source code, etc. A built-in editor enables
you to promptly correct your code right in the Source window and to start emulation

9

Phyton In-Circuit Debugger - PICD-430

immediately. The whole development process becomes faster and easier. The Project-430
IDE and PICD-430 support project mode development for C compilers and assemblers
from IAR Systems (EW-430) and MicroCOSM-ST (MCA-430 and MCC-430). A macro
assembler, MCA-430, is a part of the Project-430 IDE. It is available at no charge and is
always included with the IDE tool set.

Source-level Debugging

If you prefer to use your own favorite editor and compiler you can load your program for
debugging via Main memu > File > Load program for debugging... Then enter the file
name into the File name field or use the Browse button to find the file. Specify the file
format, its start address in the destination memory, and the memory type – code or data.
Click OK and you will see the program text in the Source window.

PICD-430 Windows

The PICD-430 allows you to open the following windows to control the development
process:

• Source (combined with Editor)
• Disassembler
• Project
• Message
• Watches
• AutoWatches
• Inspector
• Memory Dump
• Memory Layout
• Code Browser
• Peripherals
• Tracer
• Console
• User
• I/O Stream
• Script Source

To open a particular window go to Main Menu > View and then click on the desired
window type. You can open an unlimited number of windows, even of the same type,
except for the Source window that opens automatically when the program is loaded.
Every window has its own local menu that offers a set of frequently used commands
associated with this particular window, as well as an individual toolbar with buttons for
frequently used commands. Data displayed in the PICD-430 windows can be set in

10

Phyton In-Circuit Debugger - PICD-430

several formats (hexadecimal, decimal, binary, ASCII); select the most convenient for
viewing.

Source Window

In this manual, we use the term Source window, because it reflects the main purpose of
this type of window: to display the program source text. Actually, the Source window
can display a text file of any type and provide full-scale editing features. From this point
of view, it can be treated as the Editor window. As mentioned above, when you load a
program or a project for debugging, its text is displayed in the Source window. Any
action on the text is treated as switching to the Editor mode. Starting any command
(Make, Run, Step, etc.) is treated as switching to the debug mode.

The Source/Editor window can have a pane on the right that displays information
according to the current window mode. For writing the source text, the right pane
displays the automatic word completion list. For the debugging mode, the right pane
displays the variable values located in the corresponding lines of the left (main) pane.
To have the right pane present in a newly opened Source window, set up the Auto
word/AutoWatch pane option in the Editor Options dialog box. Each Source window has
a toolbar button that toggles the right pane on and off.

The instruction addresses, which correspond to the current value of the target processor
PC (Program Counter) and the set breakpoints, are highlighted. A blue strip highlights a
line of the current assembly instruction. The Quick watch feature works as follows: if you
point at a variable name in the window, a small box containing the value of the variable is
displayed next to the cursor. This box disappears when the cursor is moved.

Here is a list of the commands associated with the Source window:

• Run to cursor
• Inspect
• Add to Watches window
• Check variable
• View disassembly
• Functions list
• Toggle code breakpoint
• New PC
• Display from address
• Origin
• Pick Source file
• Compile
• Show next compiler error
• Mixed with disassembly

11

Phyton In-Circuit Debugger - PICD-430

Disassembler Window

The Disassembler window displays a disassembled text of the program. If the loaded
code has symbolic information, you can also see the code labels and names of functions;
the instruction operands are replaced with the symbol names, where possible (this feature
can be disabled). The Disassembler window has the on-line assembler.

Instructions that match the start addresses of the C operators are marked with squares on
the left side. Instruction addresses that correspond to the current value of the target
processor PC and the set breakpoints are highlighted. A blue strip highlights a line of the
current assembly instruction. The Quick watch feature works as follows: if you point at
(hover over) a variable name in the window, a small box containing the value of the
variable is displayed next to the cursor. This box disappears when the cursor is moved.

Windows for Watching In terna l Resources and Program
Objects

The PICD-430 allows watching and modifying contents of the target microcontroller’s
registers, memory, and stack, as well as the variables, arrays, structures and other objects
defined in the loaded application program.

AutoWatches Window

The names and values of the variables that are currently visible in the Source window are
automatically displayed in the right pane of the Source window and in the AutoWatches
window if it is open. If no Source window is opened, then the symbolic names are taken
from the Disassembler window. If no Disassembler windows are opened, then the
AutoWatches window is blank.

The first lines of the AutoWatches window display the variables that appear in the
Source window line corresponding to the target processor PC value. The list of names of
variables is denoted with the red line.

Below the lines with variables, the AutoWatches window displays the names of the
current function parameters and its local variables. The AutoWatches window sorts and
displays the variables according to their significance; that is, by their proximity to the
debug context. The list in the Autowatches window automatically changes as you scroll
through the Source window. The current object is highlighted. You can move the
highlight either using the mouse (a single click moves the highlight bar to the current
mouse pointer position) or the arrow keys of the keyboard.

Watches Window

12

Phyton In-Circuit Debugger - PICD-430

The Watches window displays the variable values. The variable value is defined by its
name. The Expressions can be used as names. Unlike the AutoWatches window, the
variables ("watches") are manually added to and removed from the window. The complex
objects (such as structures or arrays) are displayed in one line. If an object is complex and
it is necessary to view it in detail, then use the Inspect window command for this object.

Use the following ways to add a variable to the Watches window:

• With the Add Watch command
• With the Copy to Watches window command of the AutoWatches and Memory

Layout windows
• With the Add to Watches window command of the Source window
• With the Add Watch command of the Commands menu in the Mmain window
• By clicking the appropriate button on the control bar of this window

The current object is highlighted. You can move the highlight either using the mouse (a
single click moves the highlight bar to the current mouse pointer position) or the arrow
keys of the keyboard.

You can add and delete watches, and inspect and modify them via the local menu’s
commands. To change the value of a highlighted variable, you can type the new value
from the keyboard. The prompting dialog box will appear automatically.

Peripheral Windows

The Peripheral device window shows the status of the target microcontroller’s special
function registers (SFRs) and allows adding a specified SFR to the Watches window to
monitor its value. It is expected that later versions of the PICD-430 system will allow
other peripherals to be watched.

Memory Dump Window

The Memory Dump window displays the memory dump of the target processor memory.
Since memory is one of the most important processor resources, PICD-430 provides
several options for the data presentation. Note that you can open as many memory dumps
as you want.

When the window is active (when it has the keyboard input focus) a caret appears. It can
be moved with the cursor keys or the mouse: a single click of the left mouse button
places the caret at the position of the mouse cursor.

13

Phyton In-Circuit Debugger - PICD-430

Working with Projects

PROJECT is a set of parameters that completely describe your task. This set includes:

• Project name and comments on the project
• Names of all source files used in the project
• Project objective (a promable file or a library)
• Operation modes of the built-in make administrator
• Tool set used for this project (the compiler, linker, assembler and librarian) and

their configuration
• Default paths to the library files; the include files and executable compiler files
• Current state of the project and the desktop configuration

You do not need to remember compiler options and linker command lines, because all of
them are set up through user-friendly dialog boxes. The PICD-430 IDE keeps the
specified parameters throughout the development process until you change them. As
mentioned above, the PICD-430 program includes a few examples of projects written
with different compilers. You can always invoke a list of these examples through the
Scrip submenu of the Main menu.

Creat ing a New Pro ject

To create a new project, use Main menu > Project > New. In the Create New Project
dialog, specify parameters for this project in the General Properties group, select a cross-
tool kit in the Cross-tools group and click OK. The previously loaded project, if any, will
be automatically saved. Other project options will be set to their default values. Later,
you can change the cross-tools and their parameters (see How to Set up Cross-tools).

General Properties

Pro jec t Name

The name of the project should not include symbols that aren’t permitted in file names,
such as ‘/’, '?', '*'.

Pro jec t D i rec tory

When you work with multiple projects and use the same source files for different
purposes, it is strongly recommended that you use an individual directory for each
project, and that you specify different paths for their output files in the Folders group of

14

Phyton In-Circuit Debugger - PICD-430

the Create New Project dialog. This ensures that the Make utility works correctly, since
any ambiguity relating to object file versions will be eliminated. You do not need to
create the individual directories – the program will do this for you if necessary.

Descr ip t ion

This is an optional field that describes a new project.

Target Microcontroller for the Project

After you specify the type of target microcontroller, the IDE will always check and warn
you if there is a conflict between the setting in the project and the setting in the hardware
configuration.

Cross-tools

In order for third party cross compilers and linkers to work properly with PICD-430, you
should set up these tools properly. First, highlight the Cross tools line in the left pane and
select the name of the compiler vendor. Then highlight the individual tools (C compiler,
Assembler, Linker, Librarian) at left and set up the highlighted tools, following the tools
vendor’s instructions. Read further about preparing the files for source-level debugging.

Memory Areas

Here you can redefine addresses for Code and Data memories of the target
microcontroller.

 Folders

Highlight the Folder line at left and specify paths to includes files, default libraries and
binary components (compiler, linker, assembler, etc.). You can browse for the destination
subdirectories (folders) or search for reserved names and file extensions for the selected
tools.

Make Options

Here you can define parameters for the Make utility that will compile and link your
projects.

15

Phyton In-Circuit Debugger - PICD-430

Managing Pro jects

When you click OK, completing creation of a new project, the program will open a blank
window with the title “Project: name of your project.” Now you need to gather programs
comprising your project. A toolbar on the top of the Project window offers the most
frequently used command buttons.

Adding Files to a Project

Click on the Add button to get the Add file to project dialog. Then pick the files that you
would like to add to the project. If the Copy files to project directory option is checked,
then selected files will be copied into the project directory unless they are already there.

Editing Project Files

In order to view and modify text of a file that’s included in the project, highlight this file
and click on the Edit button on the window’s toolbar.

Save Projects

To save a project on disk, select Main menu > Project > Save. The IDE automatically
saves an open project on exit. In the Project-430 IDE, project files have .ide extensions
(for example J_Smith_project_3.ide).

Open an Existing Project

Use the Main menu > Project > Open... command to open an existing project stored on a
disk. Type in the project name or browse a PC disk to load the project you need (select a
file with an .ide extension).

Bui ld ing Pro jects

To launch compilation and link steps for a loaded project, press the F6 button on your
keyboard or click the Make button on the main toolbar (second from left). If the process
runs to completion with no errors you will get an OK status message. Otherwise the
program will show you that there were some errors and/or warnings and will
automatically open the Messages window that contains the error messages. If you click
on an error message in the Messages window, then a program string in the Source
window that’s associated with the error will be highlighted. Then you can correct your
source text and immediately recompile the project.

16

Phyton In-Circuit Debugger - PICD-430

To go directly to debugging without the compile/make steps, you can start the target
program in the run mode or the single step mode. If the program has not yet been
compiled, the PICD-430 project manager will detect that condition and will automatically
invoke the compiler and linker. If errors are detected, you will get error messages and
you will be prompted to correct the program sources. If there are no errors, the output file
will be written into the target microcontroller flash memory and the program will
automatically start in the run mode or single step mode.

Program Debugging

The PICD-430 is a powerful tool that provides all necessary debugging operations:
loading a program for debugging, program execution in several modes, examining and
modifying variables and other program objects, setting breakpoints, tracing, etc.

Prepar ing Programs for Source - leve l Debugging

Only the compilers listed below can be used for source-level debugging. The object
programs generated by other compilers can also be debugged if a hexadecimal executable
file of the program or binary memory image is available, but in this case the powerful
features associated with source-level debugging are not available. Here is the list of
compilers supported by the PICD-430:

• EW-430 C compiler from IAR Systems
• MCC-430 C compiler from MicroCOSM-ST

The MCC-430 itself is a command-line compiler that does not have an IDE of its own,
but it has been integrated with the Phyton Project-430 IDE. All options are preset to work
with the Phyton IDE, which automatically generates all information necessary for source-
level debugging.

Setting EW-430 from IAR Systems

The EW-430 compiler from IAR Systems is a very popular tool for development of
programs written for MSP430 microcontrollers. Many developers use it, together with
the Embedded Workbench IDE. If you prefer to continue to edit and compile your
programs in the EW-430 environment, then you can still use the PICD-430 for source-
level debugging. Here’s how it’s done.

• Open the EW-430 IDE.
• Create a new project and add your source files to it.
• Select Debug in the Targets field of the Project window.
• In the Project window click the right mouse button onto a very first string Debug.

17

Phyton In-Circuit Debugger - PICD-430

• Select Options from the pop-up menu. A dialog will appear for setting the cross-
tools options.

• In the Category list select the 'ICC430' line. It will bring to the screen a list of the
compiler’s options. Click on the tab Debug.

• Check the Generate debug information option.
• Set the option '2 NOP's' in the field at the bottom that’s labeled Code added to

statements.
• In the Category list select the 'A430' line. It will bring to the screen a list of the

assembler’s options. Click on the Debug tab.
• Check the Generate debug information and File references options.
• In the Category list select the 'XLINK' line. It will bring to the screen a list of the

linker’s options.
• Check the Debug info option. Select ‘Include all’ in the field Module-local

symbols.
• Click OK to complete settings.

Now, after the project is linked, EW-430 will create an output file with the extension
.D90. By default EW-430 creates this file in the subdirectory “Debug\Exe”. This is the
file that should be loaded to PICD-430 for debugging.

For debugging, click on Main menu > File > Load program for debugging, then select
IAR System UBROF format, and type in or browse a name of the file with extension
.D90. Then click OK to load the file into the PICD-430.

Program Execut ion

A list of the commands used to initiate execution in several modes is presented in the
"Run" submenu. Some of these are duplicated on the main toolbar.

• Step (or High-Level Step or F7) executes only one high-level C language
operation in the user program.

• Step Over (or High-Level Step Over or F8) executes one step of the program at
the "high level" without breaking at the functions called from the current operator.

• Low-level Step (or Ctrl-F7) executes only one machine instruction.
• Low-level Step Over (or Ctrl-F8) executes only one machine instruction without

breaking at the functions called from the current operation.
• Run (F9) starts running the target program in the continuous mode. The program

runs until a breakpoint is encountered or the program is stopped in some other
way. Click on the same button (F9) to stop running.

• Run to Address command starts running the program in the continuous mode, up
to a specified address.

18

Phyton In-Circuit Debugger - PICD-430

Breakpoints

The PICD-430 allows unconditional and conditional breakpoints (also known as complex
breakpoints).

Unconditional Code Breakpoints

Each MSP430F subfamily has its own specific number of code breakpoints:

MSP430F subfamily

Number of
breakpoints

MSP430F11x1 2

MSP430F11x2 2

MSP430F12x 2

MSP430F12x2 2

MSP430F13x 3

MSP430F14x 3

MSP430F41x 2

MSP430F43x 3

MSP430F44x 8

Single (also simple) breakpoints are set at one program address. You can set and clear
the breakpoints in an entire address range. This is useful for tracing a program’s "flights"
to unavailable addresses. The code breakpoint is a breakpoint of the "break-before-
execution" type. This means that when your program reaches the breakpoint address, it
will stop before executing the instruction located at this address.

Use the following ways to set and clear the code breakpoints:

1) Set the cursor in the instruction line within the Source or the Disassembler
window and click on the Break button of the window toolbar. The breakpoint is
set/cleared at the address corresponding to the cursor position in the window.

2) Select Main menu > Breakpoints > Code Breakpoints options of the Breakpoints

menu. This menu has also the Clear All Breakpoints command.

The Source and Disassembler windows display the code breakpoints by highlighted lines
with the user–defined background color (red by default). When the program reaches a
breakpoint and stops, the line color is changed (to yellow by default).

When the program being debugged is reloaded, all breakpoints are cleared by default,
because usually the program is reloaded after recompilation, which may change the
particular code addresses. To turn off this default option, use the Debug Options dialog.

19

Phyton In-Circuit Debugger - PICD-430

Complex Event and Triggers

The PICD-430 has a special logical unit known as the Event Processor that enables
setting complex breakpoints. With complex breakpoints, program execution breaks when
a set of programmed conditions is true. These conditions can also be set to trigger some
events, such as starting or stopping trace recording, without stopping program execution.
Complex events or triggers are enabled for two of the MSP430F44x and MSP430F43x
subfamilies only.

Note!
In order to use complex events and triggers, a user should have a full understanding of
the MSP430 architecture, as well as the principles of the target MCU and the
terminology used in this manual.

If you have set a trigger condition that contradicts the logic of the target MCU, this
trigger will never work or will work only as a result of malfunctioning of the target.
To invoke a setting dialog, go to Main menu > Breakpoints > Complex events . Two
options will be presented: Simplified scheme and Advanced scheme. The Simplified
scheme allows you to set complex events that directly stop application program
execution. The Advanced scheme has many more options. Besides programming the
events breaking the program execution it enables program OR, AND and sequential
combinations for both stopping program execution and starting or stopping trace
recording.

Simpl i f i ed Scheme

When you select this scheme you get a mnemonic picture showing two programmable
logical blocks: MCU events and Enable switches. Click on the button Edit in the MCU
events block – you will enter the MCU events setup dialog

MCU Events

The EEM of the enhanced subfamilies of the MSP430 has two kind of triggers: Memory
Bus (MB0 .. MB7) and Register Write (RW0, RW1) – so altogether there are 10
complex events accessible for programming. The MCU events setup dialog enables you
to set the events defined by the real status of the target MCU’s internal buses.

MBx Se t t ings

Click on the tab MB0…MB7 to program Memory Bus event (trigger). A dialog appears.

20

Phyton In-Circuit Debugger - PICD-430

Bus Value – here you can either directly specify the value in binary or hex form or pick a
symbolic name from the list of variables or pick an instruction code.

Bus Value Type – here you can choose whether the Bus Value defined above applies to
the address bus (MAB) or the data bus (MDB).

Compare Mode – set a comparison condition of an actual bus value and those set above:
equal to, not equal to, greater or equal to, less or equal to.

Bus Cycle Type – here you can specify the cycle type – Read or Write – in which the
condition will be checked. Checking the Don’t care box enables checking in both types of
cycles.

RWx Set t ings

Click on one of two tabs – RW1 or WR2 – to program the triggering condition for the
register bus. Here you can set a condition to trigger the event on writing into a specified
register of the target microcontroller (not reading from!).

Bus Value – here you can directly specify the value in binary or hex form. You can mask
some digits or nibbles of the value.

Compare Mode – set a comparison condition of an actual bus value and those set above:
equal to, not equal to, greater or equal to, less or equal to.

Register – select the register (R0…R15) which triggers the programming event when
writing to that register takes place.

Event Hold – check this box if you would like to hold the event until the next writing to
the specified register.

Rest r ic t ions o f the Reg is te r Wr i te T r igger Se t t ings

There are some restrictions for settings in this dialog:

1. Do not check the Event Hold option in conjunction with the R0 (Program
Counter) and R2 (Status Register) registers because not all the changes in these
registers are observed; therefore, they’re not completely accessible for the trigger
Register Write Event.

2. ‘Increment the R0 register’ is not accessible for the trigger Register Write (RWx).

3. R2 (Status Register) can be modified either by program instructions or by setting

its flags after execution of some arithmetic operations by the target MCU’s ALU.
All writes to R2 (Status Register; SR) via instructions are observed. Changes of

21

Phyton In-Circuit Debugger - PICD-430

ALU status bits due to arithmetic operations are not seen. Thus checking the
Event Hold feature might give unexpected results. We do not recommend using
the R2 register for setting a Register Write (RWx) trigger.

4. If you have selected the R3 (ConstantGenerator) register, take note that only the

values of R2's functional bits are observed. If the Event Hold option is unchecked,
then all writes (either via instructions or via arithmetic operations affecting status
flags) are observed. However, the reset of SR due to an interrupt is not seen (an
interrupt is not a write operation). If the Event Hold option is checked, the
contents of the functional bits are continuously observed and all changes within
these bits are seen. The trigger is active as long as the chosen comparison of
'value' with the functional bits is true. Since the case is quite complicated we also
do not recommend usage of the R3 register for setting a Register Write (RWx)
trigger.

5. Be careful when setting the Compare Mode options. If you select the R3 register

do not set both “Equal to” and “Not equal to” options. If you select the R2 register
be careful setting “Less or equal” and “Greater or equal” options.

Enabling Events

You can individually enable or disable actions of the programmed MCU events. Click on
the Edit button in the “Enable switches” block and check only those boxes, which
correspond to the MCU events that should cause a break in application program
execution.

Advanced Scheme

This scheme allows you to program much more complex conditions for stopping the
target MCU execution and trace recording.

MCU Events

Setting of the MCU events’options is absolutely the same as was described above in the
chapter called Simplified scheme.

AND Matrix

In order to program a combination of MCU events, click on the Edit button in the block
AND Matrix. To program an AND check multiple boxes in one vertical line.

Sequencer

22

Phyton In-Circuit Debugger - PICD-430

This state machine allows programming a chain of events (even events that aren’t
concurrent) that elaborates an MCU breakpoint or a trigger for trace recording.

The Sequencer has 4 state units (State0, State1, State3, State3) and every state unit has a
pair of outputs; thus there are 8 transfers altogether. State0 is the initial default state, just
after the Sequencer reset. The Sequencer goes to reset either upon any reprogramming
by a user or by the MB4 event if the Reset box is checked. State3 is the output state. If
you check the Sequencer Enable box, then the Sequencer output will come to the
Enable Switches matrix instead of output #7 from the AND Matrix.

The Sequencer jumps from a current stage to a following one (Destination Stage) upon
triggering an appropriate output from the AND Matrix: #4, #5, #6 or #7. By setting
Destination Stage numbers at the stage block outputs, you can program very complex
breakpoints and triggers.

Enabling Breakpoints and Triggers

You can individually enable or disable actions of the programmed MCU events. Click on
the Edit button in the Enable switches block and check only those boxes, which
correspond to the MCU events that are relevant for the break you want.

Trac ing

The trace buffer is a part of memory inside some MSP430 microcontrollers. It allows
real-time recording of the execution of the target program. We will call the process of
write/read to/from this memory as trace recording or tracing. Only the MSP430F44x and
MSP430F43x subfamilies have trace buffers that support program tracing.

The MSP430 trace buffer is a looped, 8 frame deep, FIFO memory file that records trace
frames that include:

• Address bus states (MAB);
• Data bus states (MDB);
• States of the control signals bus (MCB).

The PICD-430 tracer can record to the trace buffer either continuously or when triggered
by the MCU events described above in the chapter Complex Breakpoints And Triggers.

Tracer Window

23

Phyton In-Circuit Debugger - PICD-430

The window can be opened via the Main menu > View > Tracer menu. Each frame
displayed in the window is a set of data captured at the moment when the frame is
recorded. The data shown are augmented by some information added by the debugger.

The window can display up to 8 frames, which are numbered from 0 to 7. The number of
the last frame is always zero (0) and the preceding frames are numbered in a decreasing
order: -1, -2,…-7. Each frame contains the following data:

• Frame number (0, -1, -2, …-7);

• States of the control signals bus (MCB) as shown in the table below:

F Instruction Fetch Cycle Shows the fetch memory cycle
R Read/Write Cycle Shows type of the memory access: ‘R’ for read, ‘W’ for write
B Byte/Word Cycle Shows type of the memory fetch – ‘b’ for 8-bit (byte), ‘w’ for 16-bit (word)
I Interrupt Cycle Shows interrupt cycles
C CPU off State Shows that the target MCU is off
P Power Up Clean State Shows the target MCU reset after power was on
Z Zero State Shows an idle cycle
T Event Condition State Shows the Complex Event (trigger)

• Addr - an actual status of the address bus captured in real time (2 bytes).

• Op – opcode, or an actual status of the data bus captured in real time (2 bytes).
Tracer capures on this bus code all of the commands executed by the target MCU
and data.

• Instruction - this field shows mnemonics of the codes read in the Instruction
Fetch cycles.

• Source – a line of the source code that’s associated with the first instruction of the

object code for that line.

 T racer Window Commands

Frequently used commands that control the PICD-430 tracer can be accessed either via
the window’s local menu (right mouse button) or by clicking on the buttons that comprise
the window’s toolbar.

Clicking on the Clear button erases the trace buffer and window contents.

Clicking on the Source button invokes the Source or Disassembler window displaying a
portion of the code corresponding to the current frame in the Tracer window.

Clicking on the Setup button invokes the setup dialog.

Tracer Window Setup Dialog

24

Phyton In-Circuit Debugger - PICD-430

Enable State Storage (Tracer) – By checking/unchecking this box you enable or disable
trace recording. Keep in mind that the tracer hardware consumes some energy that is not
included in the target MCU specifications.

Tracer Store Mode – This allows you to set basic modes for trace recording and
triggering.

The tracer can fill the trace buffer in the following three modes:

1. On event – Record only the cycles for triggers set in the "Complex Event
Processor and Tracer" dialog. If the trace record was triggered by a programmed
M?mory Bus Event with the option Fetch hold, then the first captured cycle will
consist of the instruction that triggered the trace record; the last captured cycle
will consist of the instruction fetch following it.

2. Instruction Fetch only – Record only the instruction fetch cycles.

3. All cycles – Record all the clock (MCLK) cycles.

The tracer can be programmed to one of three different conditions of start/stop recording:

1. Stop tracing when buffer is full – stop filling the trace buffer when it overflows.

2. Start tracing on event – begin trace buffer filling on a programmed condition
(trigger). The first recorded cycle is the cycle following the one in which the
condition has occurred. If the Instruction Fetch only was checked (see above) then
the tracer will record the first instruction following the cycle in which the
condition has occurred.

3. Stop tracing on event – stop trace recording on the programmed trigger event.

The last recorded frame (#0) will store the cycle in which the condition has
occurred.

Display frame contents – Here you can filter out some fields in the trace frames if you do
not want to see them. By default all the fields are checked and are shown in the Tracer
window. You can uncheck unwanted flags or fields to make them invisible and to make
the frame format more convenient to watch.

Symbol names in disassembly – checking this box enables the tracer to show symbolic
names is the Disassembler field, if the names are accessible.

Working With The Tracer In Low-Power Mode

There are some notable aspects of tracing when the target microcontroller is in a Low-
Power Mode (LPM). In this case, only the CPU Off bit will be recorded to the frame

25

Phyton In-Circuit Debugger - PICD-430

when the target microcontroller runs in LPM because the tracer cannot record frames
while the clock (MCLK) is off.

The table below shows the frames recorded by the PICD-430 tracer for the case when the
program sets Low-Power Mode and then an interrupt occurs (option “All cycles” was
set):

Frame Addr Op F R I C Comment
-7 F028 D032 x R - - Set_LPM (read Instruction Code)
-6 F02A 0018 - R - - Set_LPM (read Insruction Data)
-5 F02C 4303 x R - x Read Instruction Code after "Set_LPM"

CPU and MCLK are off, the tracer does not work
-4 F02C 4303 x R x x Branch into ISR (1. Cycle) wake up
-3 F02C 4303 - R x x Branch into ISR (2. Cycle)
-2 02FE F02C - W x x Branch into ISR (3. Cycle) save PC
-1 F02C 4303 - R x x Branch into ISR (4. Cycle)
0 02FC 0018 - W x x Branch into ISR (5. Cycle) save SR

Tracing Modes

Tracers are the tools, which are intended to display the behavior of the target MCU when
it’s under control of the debugging program. Sometimes you need to investigate the
MCU’s behavior just after some event, sometimes before some event, and sometimes
between two events. To realize these functions the PICD-430 tracer can be programmed
in three different modes:

• Reverse tracing
• Forward tracing
• Dynamic tracing

Reverse Trac ing

This mode should be used in case you want to investigate the behavior of the target MCU
right before some event, and when it’s under control of the debugger, without breaking
the program execution. To program this mode set:

• Stop tracing on event – on;
• Stop tracing when buffer is full & Start tracing on event – off.

Tracing starts synchronously with program execution (emulation) and stops when the
trigger (complex event) occurs. If the trigger doesn’t occur, the trace recording process
will stop only when you break the program execution manually or at a breakpoint. When
program execution stops, the 8 frames stored in the trace buffer will represent the
information that preceded the moment when the trigger occurred.

26

Phyton In-Circuit Debugger - PICD-430

Forward Trac ing

This mode should be used in case you want to investigate the behavior of the target MCU
right after some event, and when it’s under control of the debugger, without breaking the
program execution. To program this mode set:

• Stop tracing on event – off;
• Stop tracing when buffer is full & Start tracing on event – on.

Tracing starts only when the trigger (complex event) occurs and stops when the trace
buffer overflows; i.e., upon recording 8 frames. If the trigger doesn’t occur, the trace
recording process will never start. When program execution stops, the 8 frames stored in
the trace buffer will represent the information immediately following the moment when
the trigger occurred.

Dynamic Trac ing

If you need to catch an elusive bug, then recording only the frames with very specific
contents might be the best approach. Dynamic tracing allows the filtering out of the
frames you do not need while leaving in the window only those records that carry some
essential information. In this way, you can investigate the behavior of the target MCU
program without breaking the program execution between two events. To program this
mode set:

• Start tracing on event – on.
• Stop tracing on event – on;

and program two triggers to start and stop trace recording.

Tracing starts recording when one trigger occurs and stops when another occurs. Only
enabled triggers control trace recording.

27

Phyton In-Circuit Debugger - PICD-430

Append ix A

Basic terms and def in i t ions

Target microcontroller (or target MCU) - one of the MSP430 devices installed on the
user’s system (board, prototype), to which the PICD-430’s JTAG is connected.

Target is a board or a system (usually a prototype) based on the target microcontroller.

JTAG interface is a well-known abbreviation of the IEEE STD1149.1 standard debug
interface widely use in electronic industry. The PICD-430 uses this interface to obtain
access to the Enhanced Emulation Module (EEM) embedded in every MSP430 device.
The JTAG-interface implemented in the PICD-430 uses the TMS, TDI, TDO and TCK
pins of the target MCU. Some MSP430 low-pin-count derivatives have a multiplexed
JTAG and PORT debug pin known as the "T? ST" input.

Enhanced Emulation Module (or EEM) is a functional unit embedded in every MSP430
device to support on-chip debug functions. Features of the EEM are different for different
MSP430 derivatives – some have very limited features, some are enhanced, and include
tracing support. EEM includes special internal registers, logic and a limited trace buffer.

Real-time run mode. When in the real-time run mode a target MCU executes an
application program and is not under PICD-430 program control, except for the
possibility of halting execution by a user command or a breakpoint. In this mode most of
the target’s resources (CPU registers, SFRs, internal memory - SRAM, PROM, FLASH)
are inaccessible.

Halt debug mode. When it’s in the halt mode the MCU does not execute a program. The
CPU stops and it is under control of the debugger, which communicates with the target
MCU via the JTAG port. The Halt mode of the PICD-430 has the following peculiarities:

• All internal resources of the target microcontroller are accessible for the debugger
• All interrupts of the target microcontroller are disabled
• The WatchDog Timer (WDT) of the target microcontroller is frozen
• Peripheral units of the target microcontroller (Timer, ADC, etc.) can either

continue running or they can be frozen, depending on the target MCU type (see
the General Clock Control option in the Hardware Configuration dialog).

Low-level step. In this mode the target MCU executes only one machine instruction at a
time, under control of the debugger.

High-level step. In this mode the target MCU executes only one C language operation at
a time, under control of the debugger’s hardware and software. The application program
executes in real-time mode with breakpoints set at all addresses corresponding to the first
operations of the application program.

28

Phyton In-Circuit Debugger - PICD-430

In order to support high-level stepping, the debugger inserts special debug commands
(CALL to_breakpoint) in the application program; this increases code size and slows
down its execution. However, the size increase and performance slowdown are generally
insignificant. This mode uses one level of stack and can be used only if an application
program is prepared for source-level symbolic debug (see “Preparing Program For
Source-Level Debugging”).

Event trigger or trigger is an event that occurs when an output of a special logical
comparator implemented in the debugger becomes true. This n-bit comparator compares
statuses of the target MCU with a combination set by the user in several PICD-430
dialogs. Each digit can be compared to be equal to ‘0’ or to ‘1’ or it may be masked;
masking means that the actual status of the target MCU will not be determined by the
programming trigger. The trigger becomes ‘true’ or occurs when all unmasked digits
become equal to the corresponding settings.

The most important triggers, known also as MCU Events, are Memory Bus (MB) and
Register Write (RW) events. The MB triggers check the statuses of the target MCU’s bus
Address (MAB), bus Data (MDB) and bus Controls (MCB). The RWs check the status of
the target MCU’s register bus when writing into a specified register.

Since the operations of forming and buffering signals in the target microcontroller, as
well as the comparison, take at least one clock cycle (MCLK) the trigger always occurs
with a small propagation delay.

Trace frame – is a single record in the trace buffer. It is synchronized by a rising edge of
the MCLK clock signal. Each frame is 40 bits wide and consists of 8 bits of the control
bus (MCB), 16 bits of the address bus (MAB), and 16 bits of the data bus (MDB). The
MSP430’s trace buffer is 8 frames deep and is implemented only in the MSP430F44x and
MSP430F43x derivatives.

Code memory – is the memory from which the target microcontroller fetches instructions
of application programs. In the MSP430 the code memory is common for program codes,
data and Special Function Registers (SFRs). The program can reside in any type of
memory: SRAM, PROM or FLASH.

Phyton In-Circuit Debugger - PICD-430

29

Appendix B
Connecting Targets To The PICD-430 Unit
To make the PICD-430 debugger workable with the target, the following circuits should be
properly connected to the output 14-pin JTAG connector on the debugger unit’s front panel:
RST/NMI, TMS, TCK, TDI, TDO, GND, VCC, and TEST (if it exists). See the diagram below:

TCK
TMS

TDO
TDI

TEST

RST/NMI
GND

VCC

2
4
6
8
10
12
14

1
3
5
7
9
11
13

VCC

20k***

100k
0.1uF +10uFJTAG

connector

Vcc/Avcc/DVcc**

MSP430F

_RST/NMI

TDO
TDI

TMS
TCK

TEST*

Vss/Avss/DVss**

14-pin header

* Not all MSP430F derivatives have this pin.
** Pin abbreviations differ for different derivatives
*** It’s not necessary to set this resistor for all derivatives

Many standard evaluation boards (header boards, etc.) can be used as target boards to support the
PICD-430 debugger and to match its requirements. Target boards from Texas Instruments that are
part of the very popular MSP430 FET toolsets can be used with no changes with PICD-430. All
these boards have 14-pin sockets that fit the PICD-430 ribbon cables with 14-pin plugs.

When working on MSP430 applications, keep in mind that in some MSP430 devices the pins
TMS, TDI, TDO, TCK have dual functions and can be used either as the debug JTAG port or as
general-purpose ports. Such chips have a special TEST pin for switching between functions—
logical ‘1’ on the TEST pin switches the MSP430 device into the debug mode (JTAG is active).

If in the PICD-430 Hardware Configuration dialog you have enabled Hardware Reset (box is
checked), then the debugger will use the “RST/NMI” for the target MCU reset. The “RST/NMI”
pin should be connected to the Vcc line via a 100 kOhm pull-up resistor. You can continue using
this pin for purposes other than for the MCU reset, but you should drive this pin only by an FET
with an open stock.

You can leave the “RST/NMI” pin unconnected to the PICD-430 but, in case you plan using it as
the NMI input, you should uncheck (disable) the Enable Hardware Reset box in the Hardware
Configuration dialog.

30

Phyton In-Circuit Debugger - PICD-430

Append ix C

Restr ic t ions on the of Use P ICD-430

Use of the PICD-430 tool is restricted by some fundamental limitations caused by the
target architecture and basic principles of the in-circuit debugger. Here is a list of
important restrictions:

1. In the Halt debug mode all interrupts are disabled. The debugger enables them
when it goes to the real-time mode.

2. In the Halt debug mode the target MCU’s WatchDog Timer (WDT) is frozen. The

debugger enables WDT clocking when it goes to the real-time mode. On each
transaction from real-time execution to the halt state and back the WDT loses
time. Therefore, the WDT becomes inaccurate in the single step mode – it always
triggers earlier than it should.

3. Sometimes it is impossible to debug programs residing in the SRAM for the

MSP430F12x and MSP430F41x subfamilies. Use FLASH for these devices.

31

Phyton In-Circuit Debugger - PICD-430

Append ix D

Emulat ion of MSP430F44xPZ80 and MSP430F43xPZ80
Devices by Means of the MSP430F449PZ100 Microcontro l le r .

The table below shows how to wire leads of the MSP430F44xPZ80 and
MSP430F43xPZ80 devices by means of the MSP430F449PZ100 microcontroller.

F449
PZ100

 F4xx
PZ80

 Connections of the
MSP430F449PZ100 leads

Pin# Signal Pin# Signal xx - yy
1 DVcc1 1 DVcc1
2 P6.3/A3 2 P6.3/A3
3 P6.4/A4 3 P6.4/A4
4 P6.5/A5 4 P6.5/A5
5 P6.6/A6 5 P6.6/A6
6 P6.7/A7 6 P6.7/A7
7 VREF+ 7 VREF+
8 XIN 8 XIN
9 XOUT 9 XOUT
10 VeREF+ 10 VeREF+
11 VREF-/VeREF- 11 VREF-/VeREF-
12 P5.1/S0 12 P5.1/S0
13 P5.0/S1 13 P5.0/S1
14 S2 14 P4.7/S2 14-46
15 S3 15 P4.6/S3 15-47
16 S4 16 P4.5/S4 16-48
17 S5 17 P4.4/S5 17-49
18 S6 18 P4.3/S6 18-50
19 S7 19 P4.2/S7 19-51
20 S8 20 P4.1/S8 20-62
21 S9 21 P4.0/S9 21-63
22 S10 22 S10
23 S11 23 S11
24 S12 24 S12
25 S13 25 S13
26 S14 26 S14
27 S15 27 S15
28 S16 28 S16
29 S17 29 S17
30 S18 30 P2.7/ADC12CLK/S18 30-72
31 S19 31 P2.6/CAOUT/S19 31-73
32 S20 32 S20
33 S21 33 S21
34 S22 34 S22
35 S23 35 S23
36 S24 36 P3.7/S24 36-64
37 S25 37 P3.6/S25 37-65
38 S26 38 P3.5/S26 38-66
43 S31 43 P3.0/STE0/S31 43-71
39 S27 39 P3.4/S27 39-67
42 S30 42 P3.1/SIMO0/S30 42-70
40 S28 40 P3.3/UCLK0/S28 40-68
41 S29 41 P3.2/SOMI0/S29 41-69
44 S32
45 S33
46 P4.7/S34
47 P4.6/S35
48 P4.5/UCLK1/S36
49 P4.4/SOMI1/S37
50 P4.3/SIMO1/S38
51 P4.2/STE1/S39

32

Phyton In-Circuit Debugger - PICD-430

52 COM0 44 COM0
53 P5.2/COM1 45 P5.2/COM1
54 P5.3/COM2 46 P5.3/COM2
55 P5.4/COM3 47 P5.4/COM3
56 R03 48 R03
57 P5.5/R13 49 P5.5/R13
58 P5.6/R23 50 P5.6/R23
59 P5.7/R33 51 P5.7/R33
60 DVcc2 52 DVcc2
61 DVss2 53 DVss2
62 P4.1/URXD1
63 P4.0/UTXD1
64 P3.7/TB6
65 P3.6/TB5
66 P3.5/TB4
67 P3.4/TB3
68 P3.3/UCLK0
69 P3.2/SOMI0
70 P3.1/SIMO0
71 P3.0/STE0
72 P2.7/ADC12CLK
73 P2.6/CAOUT
74 P2.5/URXD0 54 P2.5/URXD0
75 P2.4/UTXD0 55 P2.4/UTXD0
76 P2.3/TB2 56 P2.3/TB2
77 P2.2/TB1 57 P2.2/TB1
78 P2.1/TB0 58 P2.1/TB0
79 P2.0/TA2 59 P2.0/TA2
80 P1.7/CA1 60 P1.7/CA1
81 P1.6/CA0 61 P1.6/CA0
82 P1.5/TACLK/ACLK 62 P1.5/TACLK/ACLK
83 P1.4/TBCLK/SMCLK 63 P1.4/TBCLK/SMCLK
84 P1.3/TBOUTH/SVSOUT 64 P1.3/TBOUTH/SVSOUT
85 P1.2/TA1 65 P1.2/TA1
86 P1.1/TA0/MCLK 66 P1.1/TA0/MCLK
87 P1.0/TA0 67 P1.0/TA0
88 XT2OUT 68 XT2OUT
89 XT2IN 69 XT2IN
90 TDO/TDI 0 TDO/TDI
91 TDI 71 TDI
92 TMS 72 TMS
93 TCK 73 TCK
94 RST/NMI 74 RST/NMI
95 P6.0/A0 75 P6.0/A0
96 P6.1/A1 76 P6.1/A1
97 P6.2/A2 77 P6.2/A2
98 AVss 78 AVss
99 DVss1 79 DVss1
100 AVcc 80 AVcc

33

Phyton In-Circuit Debugger - PICD-430

Append ix E

Target boards , approved for use wi th P ICD-430
Here is the list of target boards optionally supplied with the PICD-430 debuggers:

Target MSP430 device MSP430 subfamily Recommended Olimex target board MCU on the target board

 MSP430F11x1D MSP430-H1121 MSP430F1121A
MSP430F110 TI Active, Not Recomended for New
MSP430F112 TI Obsolete
MSP430F1101 TI Obsolete
MSP430F1111 TI Obsolete
MSP430F1121 TI Obsolete

 MSP430F11x1A MSP430-H1121 MSP430F1121A
MSP430F1101A
MSP430F1111A
MSP430F1121A

 MSP430F11x2 (MSP430-H1121) MSP430F1121A

MSP430F1122 Partially
MSP430F1132 Partially

 MSP430F12x MSP430-H123 MSP430F123
MSP430F122
MSP430F123

 MSP430F12x2 MSP430-H1232 MSP430F1232

MSP430F1222
MSP430F1232

 MSP430F133 MSP430-H149 MSP430F149
MSP430F133

 MSP430F135 MSP430-H149 MSP430F149
MSP430F135

 MSP430F147 MSP430-H149 MSP430F149
MSP430F147

 MSP430F148 MSP430-H149 MSP430F149
MSP430F148

 MSP430F149 MSP430-H149 MSP430F149
MSP430F149

 MSP430F41x MSP430-H413 MSP430F413
MSP430F412
MSP430F413

 MSP430F43x MSP430-H449 MSP430F449
MSP430F435
MSP430F436
MSP430F437

 MSP430F44x MSP430-H449 MSP430F449
MSP430F435
MSP430F436
MSP430F437
MSP430F447
MSP430F448
MSP430F449

	Introduction
	Deliverables
	Main Features
	Software Installation
	Hardware Installation
	Choosing an Appropriate Power Scheme for the PICD-430

	Starting the PICD-430
	Configuring the PICD- 430
	Target
	Target MCU Power Management
	Follow Target Board Voltage
	User Specified, Value in Volts

	Options
	Enable Hardware Reset
	Reset Delay, ms
	General Clock Control in Break Mode
	Emulation Mode

	Development with the PICD- 430 IDE
	Project-level Support
	Source-level Debugging

	PICD-430 Windows
	Source Window
	Disassembler Window
	Windows for Watching Internal Resources and Program
Objects
	AutoWatches Window
	Watches Window
	Peripheral Windows
	Memory Dump Window

	Working with Projects
	Creating a New Project
	General Properties
	Project Name
	Project Directory
	Description

	Target Microcontroller for the Project
	Cross-tools
	Memory Areas
	Folders
	Make Options

	Managing Projects
	Adding Files to a Project
	Editing Project Files
	Save Projects
	Open an Existing Project

	Building Projects

	Program Debugging
	Preparing Programs for Source- level Debugging
	Setting EW-430 from IAR Systems

	Program Execution
	Breakpoints
	Unconditional Code Breakpoints

	Complex Event and Triggers
	Simplified Scheme
	MCU Events
	MBx Settings
	RWx Settings
	Restrictions of the Register Write Trigger Settings

	Enabling Events

	Advanced Scheme
	MCU Events
	AND Matrix
	Sequencer
	Enabling Breakpoints and Triggers

	Tracing
	Tracer Window
	Tracer Window Commands

	Tracer Window Setup Dialog
	Working With The Tracer In Low-Power Mode
	Tracing Modes
	Reverse Tracing
	Forward Tracing
	Dynamic Tracing

	Appendix A - Basic terms and definitions
	Appendix B - Connecting Targets To The PICD- 430 Unit
	Appendix C - Restrictions on the of Use PICD- 430
	Appendix D - Emulation of MSP430F44xPZ80 and MSP430F43xPZ80
Devices by Means of the MSP430F449PZ100 Microcontroller
	Appendix E - Target boards, approved for use with PICD- 430

